
Stan G. Moore

Computational Multiscale
Sandia National Laboratories

Albuquerque, New Mexico, USA
stamoor@sandia.gov

Short Course

Sparta: A Parallel, Flexible, Open-Source DSMC code
September 24, 2023; Santa Fe, New Mexico USA

1

SPARTA: Building, Running, Performance

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-
0003525. SAND2023-09457C

mailto:magalli@sndia.gov

§ Stan Moore
§ One of the SPARTA code developers at Sandia National

Laboratories in Albuquerque, New Mexico
§ Been at Sandia for 11 years
§ Main developer of the KOKKOS package in SPARTA (runs

on GPUs and multi-core CPUs)
§ PhD in Chemical Engineering, dissertation on molecular

dynamics method development
§ Also work on LAMMPS code

About Me

2

SPARTA Intro

(Stochastic PArallel Rarefied-gas Time-accurate Analyzer)
§ Direct Simulation Monte Carlo (DSMC) code
§ Core developers are Steve Plimpton, Michael Gallis, and Stan

Moore (Sandia National Laboratories)
§ Open-source, http://sparta.github.io
§ Collaborators: ORNL, LANL, ANL, LBNL, NASA, ESA, academia

3

Spacecraft TurbulenceInstabilitiesRe-entry Porous Media

S. J. Plimpton, S. G. Moore, A. Borner, A. K. Stagg, T. P. Koehler, J. R. Torczynski, M. A. Gallis, Physics of Fluids, 31, 086101 (2019)

http://sparta.github.io/

SPARTA Features

§ Structured grids with complex surfaces via cut and split cells

§ Hierarchal grids with adaptive mesh refinement

§ MPI parallelism using highly scalable domain decomposition
4

SPARTA Features (cont.)

§ Load balancing (static and dynamic)

§ In-Situ Visualization

§ And more 5Navier-Stokes

Experiment DSMC

SPARTA Reference Paper

§ https://doi.org/10.1063/1.5108534
§ Describes SPARTA algorithms, code implementation,

applications, and parallel performance of benchmarks

6

https://doi.org/10.1063/1.5108534

§ https://sparta.github.io/doc/Section_start.html#start_2
§ Need C++ compiler, MPI library
§ Two build systems, Makefile:
 cd src
 make -j4 mpi # uses Makefile.mpi

§ CMake:
 mkdir build
 cd build

 cmake -C ../cmake/presets/mpi.cmake \
 ../cmake

7

Compiling SPARTA

https://sparta.github.io/doc/Section_start.html

MPI STUBS Library

§ Sometimes need to run in serial à 1 MPI rank (e.g. no MPI lib
on your laptop)

§ SPARTA always requires an MPI library, however can use MPI
STUBS library bundled with SPARTA as a workaround

§ MPI STUBS is automatically included in Makefile.serial:
 cd src

 make –j4 serial

8

§ Run on 4 MPI ranks on CPU
 cd bench
 mpiexec –np 4 –bind-to core \

 ../src/spa_mpi –in in.collide

9

Running SPARTA

§ Currently, 7 out of the top 10 supercomputers use GPUs (NVIDIA or
AMD), according to the June 2023 Top500 List
(https://www.top500.org)

§ #1 ORNL Frontier uses AMD MI250X GPUs: first true exascale
computer with an HPL score of 1.1 Exaflop/s

§ Future exascale supercomputers will also have accelerators: ANL
Aurora—Intel, NNSA El Capitan—AMD

§ Special code (beyond regular C++ and MPI in SPARTA) is required to
run well on NVIDIA, AMD, and Intel GPUs (e.g. CUDA, HIP, SYCL)

§ Hardware and corresponding programming languages are ever
changing, how to keep SPARTA up to date?

HPC Hardware Trends

10

http://www.nvidia.com/object/tesla-p100.html

https://www.top500.org/

Kokkos Performance Portability Library

§ Kokkos is an abstraction layer between programmer and next-
generation platforms

§ Allows the same C++ code to run on multiple hardware (Intel CPU,
NVIDIA GPU, Intel GPU, AMD GPU, etc.)

§ Kokkos consists of two main parts:
1. Parallel dispatch—threaded kernels are launched and mapped onto

backend languages such as CUDA or OpenMP
2. Kokkos views—polymorphic memory layouts that can be optimized

for a specific hardware
§ Used on top of existing MPI parallelization (MPI + X)
§ Used by many codes, open-source, can be downloaded at

https://github.com/kokkos/kokkos
§ Goal: future-proof the code to allow it to run on future hardware

without total re-write (i.e. Kokkos team develops new backends
for new hardware, minimal changes needed in SPARTA)

11C. R. Trott, et al. "Kokkos 3: Programming Model Extensions for the Exascale Era". IEEE Transactions on Parallel and Distributed Systems 33. 4(2022): 805-817.

https://github.com/kokkos/kokkos

SPARTA KOKKOS Package
§ Kokkos library abstractions are implemented in SPARTA as an

optional add-on package called KOKKOS
§ Algorithms in SPARTA ported to use Kokkos include:

§ Particle move, sort, collide, chemical reactions, emission from cell
faces

§ Surface collisions (diffuse, specular, etc.)
§ Several diagnostics (temperature computation, averaging of grid

quantities, etc.)
§ Complex surfaces, static and dynamic load balancing and grid

adaptation are all compatible with the Kokkos version (but some
run on host CPU)

§ Recently added Kokkos support for ambipolar approximation and
surface reactions

12

Kokkos Backends

§ Multi-core CPUs à Kokkos OpenMP backend
§ NVIDIA GPUs à Kokkos CUDA backend
§ AMD GPUs à Kokkos HIP backend
§ Intel GPUs à Kokkos SYCL backend
§ Kokkos OpenMPTarget backend can also be used for NVIDIA,

AMD, and Intel GPUs, but may be less performant than other
backends

13

§ https://sparta.github.io/doc/Section_accelerate.html#acc_3
§ Need C++17 compiler (e.g. GCC 8.2.0 or later)
§ Two build systems, Makefile:
 cd src
 make yes-kokkos

 make –j64 kokkos_cuda

§ CMake:
 mkdir build

 cd build

 cmake -C ../cmake/presets/kokkos_cuda.cmake \

 ../cmake
 make –j64

§ May need to change default Kokkos “arch” setting to match your machine

14

Compiling SPARTA with Kokkos

https://sparta.github.io/doc/Section_accelerate.html

§ Run on 4 MPI ranks + 4 OpenMP threads/rank
 scd bench
 mpiexec –np 4 ../src/spa_kokkos_omp –in

 in.collide –k on t 4 –sf kk
§ Run on 4 MPI ranks + 4 GPUs per node (1 GPU/rank)
 mpiexec –np 4 ../src/spa_kokkos_cuda –in

 in.collide –k on g 4 –sf kk
§ “sf kk” is the suffix command, see

https://sparta.github.io/doc/suffix.html, use on command line,
not recommended to edit individual styles in input script

§ Normally only use 1 MPI rank per GPU with KOKKOS package

15

Running SPARTA with Kokkos

https://sparta.github.io/doc/suffix.html

Processor and Thread Affinity

§ Use mpirun command-line arguments (e.g. --bind-to
core or –bind-to socket) to control how MPI tasks
and threads are assigned to nodes and cores

§ Also set OpenMP variables such as OMP_PROC_BIND and
OMP_PLACES

§ Pay attention to NUMA bindings between tasks, cores, and
GPUs. For example, for a dual-socket system, MPI tasks
driving GPUs should be on the same socket as the GPU

16

How to Tell if Running with KOKKOS Package?

§ Check top of screen output or log file

SPARTA (13 Apr 2023)
KOKKOS mode is enabled (../kokkos.cpp:40)

 requested 4 GPU(s) per node

 requested 1 thread(s) per MPI task
Running on 4 MPI task(s)

17

How to Tell if Running on GPUs?

§ nvidia-smi (or rocm-smi for AMD GPUs), need to run
on compute node)

18

§ See https://sparta.github.io/doc/package.html
§ Defaults should be mostly optimal
§ Be sure to use GPU-aware MPI (if applicable), otherwise

performance on GPUs will suffer
§ Different MPI libraries have different ways to enable GPU-

aware MPI (beyond scope of this talk)

19

KOKKOS Package Options

https://sparta.github.io/doc/package.html

Challenges of Chemical Reactions

§ Chemical reactions can increase the number of particles in the simulation
stochastically

§ Newly created particles immediately participate in the parallel region,
which affects the simulation outcome

§ Not possible to resize Kokkos GPU array inside a parallel region, so two
workarounds implemented:
1. Over-allocate particle storage by some amount. If this space is still not

sufficient, error out and restart the simulation using a larger value for over-
allocation: -pk kokkos react/extra 1.1 (default)

2. Make backup copies of the Kokkos Views. If space is exceeded, restore the
Kokkos Views from backup, increase their size, and restart the parallel region
from the beginning. Guaranteed to eventually succeed, but increases 2x
particle memory + overhead from making a backup copy of the Views: -pk
kokkos react/retry yes

§ Option #1 is faster but not convenient when the simulation dies and must
be restarted, option #2 is slower but guaranteed to succeed

20

§ See https://sparta.github.io/doc/global.html
§ Global options define the global properties of the simulation
§ Global options go in the input script (not on command line)
§ Examples:
 global particle/reorder 10

 global optmove yes

 global mem/limit 1024

21

Global Options

https://sparta.github.io/doc/global.html

§ Particle array starts out sorted by grid cell, but over time the
particles in the array are randomized wrt cells

§ Periodically reordering particle array by grid cell improves data
locality and cache access patterns (can give speedup)

§ However, sorting has overhead, so there is an optimal
frequency (i.e. less than every timestep)

§ Very important for GPUs (e.g. need to reorder every ~10
timesteps)

§ Also important for CPUs to prevent performance degradation
over time, but typically reorder less frequently (e.g. every 1000
timesteps)

§ Currently only works with Kokkos version, but planning to
support regular version in the future 22

global particle/reorder

§ For Kokkos version reorder is done out of place (2x particle
memory overhead)

23

global particle/reorder

24

Traditional move:
• Finds all intermediate grid cell

crossings
• Works for non-uniform (adapted)

grids and embedded surfaces

New optimized move:
• Moves particle to final position in a

single step
• Cannot handle non-uniform (adapted)

grids or embedded surfaces

global optmove

25

§ For standard “collide” benchmark on an NVIDIA V100 GPU, optimized
move helps, but particle reorder without optimized move is best

§ Optimized move helps more on an AMD MI250X GPU than on NVIDIA
V100 (not shown in figure)

§ Performance is measured in millions of particle-timesteps/s

Better

Performance of Global Options

§ Two purposes: reduce memory overhead of temporary buffers
and work around 2 billion element limit for MPI operations

§ Uses multiple passes several operations: load balancing,
reordering of particles, and restart file read/write

§ global mem/limit grid: try to make particle memory
same size as grid cell memory

§ global mem/limit 1024: work around 2 billion element
limitation in MPI (only applicable for huge simulations)

26

global mem/limit

§ Check timing breakdown in SPARTA screen output and log file

MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total

Move | 15.37 | 203.08 | 1767.5 |1799.9 | 10.16
Coll | 0.054141 | 0.093716 | 0.16875 | 9.5 | 0.00
Sort | 10.283 | 108.69 | 314.85 | 948.7 | 5.44
Comm | 2.8089 | 4.0201 | 6.2701 | 38.9 | 0.20
Modify | 3.9992 | 6.078 | 7.2366 | 37.1 | 0.30
Output | 0.0038326 | 0.0055809 | 0.0084774 | 1.9 | 0.00
Other | | 1678 | | | 83.90

27

Load Imbalance

§ Normally use RCB (recursive bisectioning) style
 fix 1 balance 1000 1.1 rcb cell

§ Can balance by cells, particles, or time, see
https://sparta.github.io/doc/fix_balance.html

§ (Movie from LAMMPS, but similar for SPARTA) 28

Load Balancing

https://sparta.github.io/doc/fix_balance.html

SPARTA Benchmarking Website

§ https://sparta.github.io/bench.html
§ Performance plots for several benchmarks: free, collide, and

sphere
§ Kokkos and non-Kokkos results
§ Single node, strong scaling, and weak scaling results
§ Also lists exact MPI run command used for every run
§ A little outdated: need to update for latest hardware and

include global options (particle/reorder and optmove)

29

https://sparta.github.io/bench.html

Example of Kokkos Performance
§ Benchmark: particles flowing around a sphere, best

performance using either Kokkos or MPI-only
§ No global optmove or particle/reorder options included
§ 1 CPU node or 1 GPU (single die for AMD MI250X)
§ Large cache effect for small problem sizes on CPUs, while

GPUs need large number of particles to saturate threads
§ AMD GPU results are preliminary, profiling/tuning ongoing

30

Towards Exascale

§ Preparing SPARTA on exascale supercomputers (OLCF
Frontier, ALCF Aurora, NNSA’s El Capitan)

§ SPARTA successfully compiles on Frontier
(Makefile.kokkos_hip) and pre-Aurora Sunspot testbed
(Makefile.kokkos_sycl), as well as other large supercomputers

§ Also preparing to run SPARTA on NNSA’s Crossroads machine
(Intel Sapphire Rapids CPUs)

§ Collaborating with vendors such as Intel, NVIDIA, and AMD

31

Basics of Kokkos Programming

§ Kokkos consists of two main parts:
1. Parallel dispatch—threaded kernels are launched

and mapped onto backend languages such as
CUDA or OpenMP

2. Kokkos views—polymorphic memory layouts that
can be optimized for a specific hardware

§ Typically thread over loops of particles or grid cells
(need significant work to keep GPU busy)

§ All particle or grid arrays inside threaded parallel
loops must use Kokkos views, class variables on stack
are accessible

§ Start with closest related style already in SPARTA and
use as a template

32

§ Domain decomposition: each processor owns a portion of the
simulation domain and particles therein

MPI Parallelization Approach

33

MPI #1 MPI #2

MPI #3 MPI #4

Kokkos Threaded Move

§ One thread pushes particles for a timestep or micro-iteration
§ All intermediate grid crossings are found
§ Performance hurt by branching, especially with surfaces. If

applicable global optmove can reduces branching
§ Statistical accumulators (i.e. number of moves, number of

surface collisions, etc.) use either a parallel reduction or an
atomic reduction on a global variable (controlled by Kokkos
package option)

34

MPI rank 1
Thread 1
Thread 2
Thread 3

Kokkos Threaded Sort

§ Threads loop over particles to sort by grid cell
§ 2D array of grid cells vs particle IDs is created, along with 1D array

of counts of particles in each cell
§ Requires thread atomics to avoid write conflicts
§ If 2D array is too small, increase second dimension, realloc, and try

again
§ Periodically reordering particle list by cell id can improve

performance (e.g. global particle/reorder 10)

35

Cell ID Part. ID Part. ID

1

2

3

4

5

6

MPI rank 1 Thread 1
Thread 2
Thread 3

…

Kokkos Threaded Collide

§ Each thread processes all the collisions in a grid cell
§ Nearest neighbor algorithm also supported

36

MPI rank 1
Thread 1
Thread 2
Thread 3

Execution and Memory Spaces

• With GPUs, Host execution space = CPU backed (serial or
OpenMP), Device = GPU

• GPUs typically have high bandwidth memory that is not
accessible from CPU: pointers to CPU DRAM cannot be
accessed on GPU; pointers to GPU HBM cannot be access on
CPU (changing in the future)

• Performance penalty when transferring data between GPU
and CPU: try to keep memory on GPU as much as possible

• If a SPARTA style is not ported to Kokkos it will run on CPU in
serial and require data transfer every time it is invoked:
consider porting to Kokkos to improve performance

• SPARTA uses Kokkos::DualView sync and modify on Device
and Host to transfer data 37

Parallel Kernel Abstractions

• Kokkos supports functors, tagged kernels where the whole
class is the functor, and C++ lambdas (anonymous functors)

• Functors are the most general but take the most
programming effort (have to copy all the needed data into
the functor)

• Typically use tagged kernels in SPARTA for convenience
• Can use C++ lambdas for simple kernels, but must use

KOKKOS_CLASS_LAMBDA to capture this pointer either
explicitly or implicitly, see
https://github.com/ibaned/lambda_users_guide

38

https://github.com/ibaned/lambda_users_guide

Kokkos Porting Example

§ SPARTA designed to be very modular so adding a new style is
easier, rarely need to touch “core” code

§ Virtual inheritance: inherit as much from parent “compute
temp” as possible to reduce code duplication

§ Example: simple “compute temp/kk” style
§ Only 1 loop that has any real computation (and that would

benefit from threading):

39

Kokkos Porting Example

40

Kokkos views

Single loop iteration

Parallel dispatch

Unified Virtual Memory (UVM)

§ Normally have to manually copy data between CPU and GPU
§ CUDA managed memory: automatically manages data

transfer between GPU and CPU
§ Less bug prone, useful for debugging, but typically slower
§ Some systems (e.g. OLCF Summit) can transparently spill out

of GPU HBM into much larger CPU DRAM, by paging memory
back and forth automatically

§ Allows running large problems that don’t fit into GPU
memory, with some performance overhead

§ Compile with the Makefile setting
KOKKOS_CUDA_OPTIONS="enable_lambda,force_u
vm” or CMake option Kokkos_ENABLE_CUDA_UVM=ON

41

Typical Kokkos Debugging Workflow
§ Much easier to debug on CPU than GPU!
1. Match Kokkos Serial backend (stats output) with vanilla CPU version

§ Tools: Kokkos debug (view bounds checking), gdb, valgrind, AddressSanitizer, printf
§ Use global comm/sort yes if running on multiple MPI ranks
§ Compile with –DSPARTA_KOKKOS_EXACT, use twopass option for

create_particles and fix emit/face, stats output should exactly agree
§ Compiling with “-O0” can help get an accurate backtrace

2. Match Kokkos OpenMP backend running on 2 or more threads with vanilla
CPU (or Kokkos Serial)
§ Will not exactly match due to different pRNG (can’t use –DSPARTA_KOKKOS_EXACT)
§ Tools: Intel Inspector (many false positives), printf
§ Typical issue: data race or other thread safety issues

3. Match Kokkos CUDA backend with Kokkos Serial backend:
§ Tools: cuda-gdb, cuda-memcheck, compile with UVM, printf
§ Compiling with Kokkos debug options (adds -lineinfo) or -G can help
§ Typical issues: missing sync/modify for data transfer (find with UVM), thread safety

issues
42

Performance Profiling Tools

1. Timing breakdown in SPARTA log file
2. Kokkos tools: my favorite tool is “space-time-stack”, shows

both kernel times and memory use
3. nvprof (deprecated) for NVIDIA GPUs and rocprof for AMD

GPUs
4. NVIDIA Nsight Compute and Systems tools (replacement for

nvprof)
5. gprof, TotalView, etc. for CPU kernels

43

Space-Time-Stack Tool Output
export KOKKOS_TOOLS_LIBS=~/kokkos-
tools/profiling/space-time-
stack/kp_space_time_stack.so

BEGIN KOKKOS PROFILING REPORT:
TOTAL TIME: 30.286 seconds
TOP-DOWN TIME TREE:
<average time> <percent of total time> <percent time in Kokkos> <percent MPI
imbalance> <remainder> <kernels per second> <number of calls> <name> [type]
===================
|-> 1.22e+01 sec 40.4% 100.0% 0.0% ------ 2000
N9SPARTA_NS12UpdateKokkosE/N9SPARTA_NS13TagUpdateMoveILi3ELi0ELi0ELi1EEE [for]
|-> 2.65e+00 sec 8.8% 100.0% 0.0% ------ 2000
N9SPARTA_NS16CollideVSSKokkosE/N9SPARTA_NS23TagCollideCollisionsOneILi0ELi1EEE
[for]
|-> 2.30e+00 sec 7.6% 100.0% 0.0% ------ 200
N9SPARTA_NS14ParticleKokkosE/N9SPARTA_NS36TagParticleReorder_COPYPARTICLELIST2E
[for]
|-> 2.17e+00 sec 7.2% 100.0% 0.0% ------ 1808
N9SPARTA_NS14ParticleKokkosE/N9SPARTA_NS15TagParticleSortILi1ELi0EEE [for]

44

Space-Time-Stack Tool Output

KOKKOS CUDA SPACE:

===================

MAX MEMORY ALLOCATED: 3304909.0 kB

MPI RANK WITH MAX MEMORY: 0

ALLOCATIONS AT TIME OF HIGH WATER MARK:
 41.1% particle:sorted

 41.1% particle:particles

 4.3% particle:plist

 3.8% grid:cells

 1.9% grid:cinfo
 1.3% particle:sorted_id

 1.3% particle:mlist

 1.3% particle:offsets_part

45

Dump Image

§ https://sparta.github.io/doc/dump_image.html
§ Can be used to visualize simulation, create movies

Example: dump 1 image all 50 image.*.ppm type
type pdiam 3e-4 surf proc 0.01 size 512 512
axes yes 0.9 0.02 particle yes zoom 15 box
yes 0.02 46

https://sparta.github.io/doc/dump_image.html

Paraview

§ https://sparta.github.io/doc/Section_howto.html#howto_16
§ Can be used to visualize simulations beyond simple dump

image

47

https://sparta.github.io/doc/Section_howto.html

§ Mail list on SourceForge:
https://sourceforge.net/p/sparta/mailman/sparta-users, get
help using SPARTA code

§ SPARTA development is supported on GitHub:
https://github.com/sparta/sparta, submit tickets for code
issues/enhancements or contribute new features

48

SPARTA User Support

https://sourceforge.net/p/sparta/mailman/sparta-users
https://github.com/sparta/sparta

§ Questions?

49

Thank You

