
Advanced and new features in SPARTA
and

How to add your own new features

Steve Plimpton
Sandia National Labs (retired)
Temple University (adjunct)

sjplimp@gmail.com

DSMC23 Short Course
Sept 2023 - Santa Fe, NM

Topics for this talk

1 Advanced features in SPARTA

2 New features since last DSMC19 conference

3 How data is stored and how parallelism operates

4 Custom attributes for particles, grid cells, surface elements

5 How to add new features and models to the code

6 Q & A about features you might like to add

2 / 52

Basic features in SPARTA

See short-course talks from DSMC15 conf
Tutorials link on webpage: https://sparta.github.io/tutorials.html

2d, 3d, and axi-symmetric (quasi-2d) models

Units and boundary conditions

Particle species and mixtures

Particle creation via boundary or surface emission

Gas-phase collision and chemistry models

Explicit surfaces: triangles in 3d, line segments in 2d

Surface collision/chemistry models

Time-averaging of particle and grid statistics

Stats style (logfile) and dump (snapshot) commands

Post-processing and viz with TecPlot or ParaView

See Section tools 9 in manual
for problem setup and post-processing tools

3 / 52

More advanced features

Will show a couple of slides on each of these topics
Point you to commands and doc pages with more details

Stan: Acceleration for GPUs or OpenMP (multi-threading)

Input script options

variables
if/then/else and looping
running multiple simulations

Adaptive gridding

Load balancing

Ambipolar approximation for low-density plasmas

Use SPARTA as a library

4 / 52

Define variables in input scripts

See variable command doc page
Styles: index, loop, world, equal, particle, grid, surf, ...

variable name index run1 run2 run3 run4
variable i loop 100
variable temp world 200.0 250.0 300.0 350.0
variable frac equal 100.0*c count[2]/np
variable vmag particle sqrt(vx*vx+vy*vy+vz*vz)
similar formulas for grid cells or surface elements

Formulas can be complex
stats keywords (step, np, vol, ...)
math operators & functions (sqrt, log, cos, ...)
special functions (min, ave, trap, stride, stagger, ...)
particle attributes (x, vx, mass, ...)
grid cell attributes (location, volume)
surface element attributes (location, area)
output from computes, fixes, other variables

Formulas can thus be spatially- and/or time-dependent

5 / 52

Define variables in input scripts

See variable command doc page
Styles: index, loop, world, equal, particle, grid, surf, ...

variable name index run1 run2 run3 run4
variable i loop 100
variable temp world 200.0 250.0 300.0 350.0
variable frac equal 100.0*c count[2]/np
variable vmag particle sqrt(vx*vx+vy*vy+vz*vz)
similar formulas for grid cells or surface elements

Formulas can be complex
stats keywords (step, np, vol, ...)
math operators & functions (sqrt, log, cos, ...)
special functions (min, ave, trap, stride, stagger, ...)
particle attributes (x, vx, mass, ...)
grid cell attributes (location, volume)
surface element attributes (location, area)
output from computes, fixes, other variables

Formulas can thus be spatially- and/or time-dependent
5 / 52

Five ways to use variables in input scripts

1 Index-style vars can be (re)set from command line

2 Substitute in any command via $x or ${myVar}
global fnum ${Fnum} nrho ${Nrho} vstream $v 0 0
read surf sdata.${filename}

3 Immediate formula evaluation via $() syntax:

avoids need to define separate one-time variable
variable xmid equal (xlo+xhi)/2
region 1 block ${xmid} EDGE INF INF EDGE EDGE
region 1 block $((xlo+xhi)/2) EDGE INF INF EDGE EDGE

4 Some commands allow variables as arguments

surf collide diffuse v temp ... (equal-style)
surf collide diffuse v temp ... (surf-style)
dump modify every v lognext (output logarithmically)
dump image ... view v theta v phi ... (fly-by movie)

5 Next command increments a multi-value variable to next value

6 / 52

Five ways to use variables in input scripts

1 Index-style vars can be (re)set from command line

2 Substitute in any command via $x or ${myVar}
global fnum ${Fnum} nrho ${Nrho} vstream $v 0 0
read surf sdata.${filename}

3 Immediate formula evaluation via $() syntax:

avoids need to define separate one-time variable
variable xmid equal (xlo+xhi)/2
region 1 block ${xmid} EDGE INF INF EDGE EDGE
region 1 block $((xlo+xhi)/2) EDGE INF INF EDGE EDGE

4 Some commands allow variables as arguments

surf collide diffuse v temp ... (equal-style)
surf collide diffuse v temp ... (surf-style)
dump modify every v lognext (output logarithmically)
dump image ... view v theta v phi ... (fly-by movie)

5 Next command increments a multi-value variable to next value

6 / 52

More options for input scripts

If/then/else logic via if command

Looping via next and jump commands

increment a parameter, run some more, repeat
loop over multiple runs (next slide)

Insert another script via include command

useful for long list of parameters

Filename wildcard and suffix options:

dump.*.% for per-snapshot or per-processor output
read restart old.restart.* for last file input
read surf sdata.huge.gz

Invoke a shell command or external program

shell cd subdir1
shell my analyze out.file $n ${param}

Various ways to run multiple simulations from one script

see Section howto 6.3 of manual

7 / 52

More options for input scripts

If/then/else logic via if command

Looping via next and jump commands

increment a parameter, run some more, repeat
loop over multiple runs (next slide)

Insert another script via include command

useful for long list of parameters

Filename wildcard and suffix options:

dump.*.% for per-snapshot or per-processor output
read restart old.restart.* for last file input
read surf sdata.huge.gz

Invoke a shell command or external program

shell cd subdir1
shell my analyze out.file $n ${param}

Various ways to run multiple simulations from one script

see Section howto 6.3 of manual
7 / 52

Example script for multiple runs

Run 8 successive simulations:

variable a loop 8

variable rho index 1.0e18 4.0e18 1.0e19 4.0e19 ...

log log.$a

global nrho ${rho}
...

compute myGrid grid all n temp

dump 1 all grid 1000 dump.$a id c myGrid

run 100000

clear

next rho

next a

jump SELF

Run 100 simulations on 8 partitions of processors until finished:

change a and rho to universe-style variables with 100 values
mpirun -np 64 spa mpi -p 8x8 -in in.flow

8 / 52

Example script for multiple runs

Run 8 successive simulations:

variable a loop 8

variable rho index 1.0e18 4.0e18 1.0e19 4.0e19 ...

log log.$a

global nrho ${rho}
...

compute myGrid grid all n temp

dump 1 all grid 1000 dump.$a id c myGrid

run 100000

clear

next rho

next a

jump SELF

Run 100 simulations on 8 partitions of processors until finished:

change a and rho to universe-style variables with 100 values
mpirun -np 64 spa mpi -p 8x8 -in in.flow

8 / 52

Adaptive gridding

Adapt means refine and/or coarsen hierarchical grid

Adapt grid command: once either before or between runs

Fix adapt command: on-the-fly adaptivity

Criteria:
nearness to surf, number of particles, mean-free path
any per-grid value calculated by a compute or fix

9 / 52

Adaptive gridding

Adapt means refine and/or coarsen hierarchical grid

Adapt grid command: once either before or between runs

Fix adapt command: on-the-fly adaptivity

Criteria:
nearness to surf, number of particles, mean-free path
any per-grid value calculated by a compute or fix

9 / 52

Load balancing

Re-assign grid cells (and their particles) to procs

Balance grid command: static before or between runs

Fix balance command: dynamic load-balancing

Based on grid cell count, particle count, or CPU cost

10 / 52

Load balancing

Re-assign grid cells (and their particles) to procs

Balance grid command: static before or between runs

Fix balance command: dynamic load-balancing

Based on grid cell count, particle count, or CPU cost

10 / 52

How recursive coordinate bisectioning (RCB) works

Breaks ties on cut planes

RCB itself is fast

Bigger cost is data migration

1 billion grid cells on 64K MPI tasks (IBM BG/Q machine)

worst case scenario: migrate all cells (and their particles)
re-balance time = 15 secs
RCB = 2, migrate = 12, acquire ghosts = 1

11 / 52

How recursive coordinate bisectioning (RCB) works

Breaks ties on cut planes

RCB itself is fast

Bigger cost is data migration

1 billion grid cells on 64K MPI tasks (IBM BG/Q machine)

worst case scenario: migrate all cells (and their particles)
re-balance time = 15 secs
RCB = 2, migrate = 12, acquire ghosts = 1

11 / 52

Ambipolar model for ionized systems

Can be used for low-density (weak) plasmas

Ambipolar approximation:

electrons are not free particles
each electron stays close to parent ion (neutral gas)
can ignore electron’s small mass and high speed (1000x)
use a normal molecular timestep ⇒ efficiency win

Implementation details:

particle stores flag for when ionized
particle stores extra velocity vector for electron
ion + electron advects as single particle
split into two particles
when performing collisions within a grid cell

12 / 52

Ambipolar model for ionized systems

Can be used for low-density (weak) plasmas

Ambipolar approximation:

electrons are not free particles
each electron stays close to parent ion (neutral gas)
can ignore electron’s small mass and high speed (1000x)
use a normal molecular timestep ⇒ efficiency win

Implementation details:

particle stores flag for when ionized
particle stores extra velocity vector for electron
ion + electron advects as single particle
split into two particles
when performing collisions within a grid cell

12 / 52

Ambipolar example

See examples/ambi and Section howto 6.11 of manual
Fix ambipolar especies ion1 ion2 ...
Collide modify ambipolar yes
React command: include charged reactions in input file

13 / 52

Ambipolar example

See examples/ambi and Section howto 6.11 of manual
Fix ambipolar especies ion1 ion2 ...
Collide modify ambipolar yes
React command: include charged reactions in input file

13 / 52

Use SPARTA as a library

See Section howto 6.6 and 6.7 of manual

C-style interface:
call from
C, C++, Fortran,
Python

See python and
python/examples
directories

Parallel python
possible via mpi4py

Library API can be
extended

% python
>>> from sparta import sparta
>>> spa = sparta()
>>> spa.file(“in.flow”)
>>> spa.command(“run 1000”)
>>> np =

spa.extract global(“nplocal”,0)
>>> temp =

spa.extract compute(“temp”,0,0)
>>> print “Np”,np,

”temperature”,temp
>>> spa.close()

14 / 52

Use SPARTA as a library

See Section howto 6.6 and 6.7 of manual

C-style interface:
call from
C, C++, Fortran,
Python

See python and
python/examples
directories

Parallel python
possible via mpi4py

Library API can be
extended

% python
>>> from sparta import sparta
>>> spa = sparta()
>>> spa.file(“in.flow”)
>>> spa.command(“run 1000”)
>>> np =

spa.extract global(“nplocal”,0)
>>> temp =

spa.extract compute(“temp”,0,0)
>>> print “Np”,np,

”temperature”,temp
>>> spa.close()

14 / 52

Topic #2

1 Advanced features in SPARTA

2 New features since last DSMC19 conference

3 How data is stored and how parallelism operates

4 Custom attributes for particles, grid cells, surface elements

5 How to add new features and models to the code

6 Q & A about features you might like to add

15 / 52

New features since last DSMC19 conference

Again, will show a slide or two on each of these topics
Point you to commands and doc pages with more details
Some of these were contributed by SPARTA users !

Implicit surfaces

Ablation of implicit surfaces

Vibrational energy states for particles

Transparent surfaces for flow statistics

Four new surface collision models

On-surface chemistry model for explicit surfs

Similar on-surface chemistry model for implicit surfs (WIP)

Two options for thermostatting particles

Create particles cut option for cut/split cells

External global field options

Couple surface temperatures to flow conditions
16 / 52

Implicit surfaces

Work with Arnaud Borner (NASA Ames)

NASA FiberFormTM porous carbon fiber material
0.52-mm3, Vfrac = 14%, 8003 grid, 57.4M tris

6 ply ADEPT weave
1-mm2 xsec, Vfrac = 75%, 168x220x744 grid, 4.5M tris

By contrast, 50000 explicit triangles for entire Mir space station

17 / 52

Implicit surfaces

Work with Arnaud Borner (NASA Ames)

NASA FiberFormTM porous carbon fiber material
0.52-mm3, Vfrac = 14%, 8003 grid, 57.4M tris

6 ply ADEPT weave
1-mm2 xsec, Vfrac = 75%, 168x220x744 grid, 4.5M tris

By contrast, 50000 explicit triangles for entire Mir space station
17 / 52

Implicit surfaces in SPARTA

See Section howto 6.13 of manual

Start with data file
e.g. experimental 3d tomographic image of heat shield material

Image voxels ⇒ corner point values on DSMC grid

Read isurf command reads voxels, assigns to grid cells

Choose threshold value between 0 and 255 for surface

Marching cubes algorithm creates triangles (squares ⇒ lines)

each triangle wholly contained in a grid cell
multiple triangles per cell to capture surface
highly parallel, compute tris for each grid cell independently

Processor owning a grid cell also owns its triangles

By contrast, one explicit triangle can span many grid cells

18 / 52

Implicit surfaces in SPARTA

See Section howto 6.13 of manual

Start with data file
e.g. experimental 3d tomographic image of heat shield material

Image voxels ⇒ corner point values on DSMC grid

Read isurf command reads voxels, assigns to grid cells

Choose threshold value between 0 and 255 for surface

Marching cubes algorithm creates triangles (squares ⇒ lines)

each triangle wholly contained in a grid cell
multiple triangles per cell to capture surface
highly parallel, compute tris for each grid cell independently

Processor owning a grid cell also owns its triangles

By contrast, one explicit triangle can span many grid cells

18 / 52

Implicit surfaces in SPARTA

See Section howto 6.13 of manual

Start with data file
e.g. experimental 3d tomographic image of heat shield material

Image voxels ⇒ corner point values on DSMC grid

Read isurf command reads voxels, assigns to grid cells

Choose threshold value between 0 and 255 for surface

Marching cubes algorithm creates triangles (squares ⇒ lines)

each triangle wholly contained in a grid cell
multiple triangles per cell to capture surface
highly parallel, compute tris for each grid cell independently

Processor owning a grid cell also owns its triangles

By contrast, one explicit triangle can span many grid cells
18 / 52

Ablation of implicit surfaces

Also work with Arnaud Borner (NASA Ames)
See talk at DSMC19 conference

Fix ablation command

Hooked to per-grid compute or fix which tallies damage

Damage = energy deposition or chemical reactions

Decrement grid corner point values due to damage

Re-triangulate periodically

Surface effectively recedes, i.e. ablates

See examples/ablation and Section howto 6.14 of manual

19 / 52

Ablation movie

8003 grid, 57M triangles, 60M particles, 22M surf collide/step
Monatomic O at 2000K, each collision ⇒ oxidation reaction
On-the-fly imaging (not ParaView quality)

20 / 52

Vibrational energy states for particles

Useful for high temperature models with molecular species

Vibrational energy can be discretized across multiple modes

Vibrational energy can be exchanged in gas phase collisions

Input per-species vibfile with info on discrete states

Collide modify command options

vibrate = no or smooth or discrete
rotate = no or smooth

Use fix vibmode command to store extra per-particle vector

See examples/vibrate and Section howto 6.12 of manual

21 / 52

Transparent surfaces for flow statistics

Group of triangles can be flagged as transparent

Particles pass through them unaffected

Transparent surf objects do not need to be watertight

e.g. can define a plane
can also intersect non-transparent surfs or each other

Surf collide transparent allows tally of count/mass/energy flux

Only one side of surface triggers tallying

See examples/circle/in.circle.transparent and
Section howto 6.15 of manual

22 / 52

Five new surface collision models

First three from Krishnan Gopalan (NASA Ames)
Fourth from Tim Teichmann (KIT)

1 cll
model of Cercignani, Lampis, and Lord
accommodation coeffs for normal, tangential, rot & vib energy

2 td
thermal desorption model of Krishnan Gopalan
scattering with thermal Maxwell-Boltzmann distribution

3 impulsive
complex collision model (8 params) of Krishnan Gopalan
appropriate for high-energy beam of particles
scattering can be highly anisotropic

4 adiabatic
model of Mohammadzadeh, Rana, and Struchtrup
isotropic scattering with conserved velocity magnitude
no energy transfer between particles and surface

5 specular noslip option = reflect all components

23 / 52

Five new surface collision models

First three from Krishnan Gopalan (NASA Ames)
Fourth from Tim Teichmann (KIT)

1 cll
model of Cercignani, Lampis, and Lord
accommodation coeffs for normal, tangential, rot & vib energy

2 td
thermal desorption model of Krishnan Gopalan
scattering with thermal Maxwell-Boltzmann distribution

3 impulsive
complex collision model (8 params) of Krishnan Gopalan
appropriate for high-energy beam of particles
scattering can be highly anisotropic

4 adiabatic
model of Mohammadzadeh, Rana, and Struchtrup
isotropic scattering with conserved velocity magnitude
no energy transfer between particles and surface

5 specular noslip option = reflect all components

23 / 52

Five new surface collision models

First three from Krishnan Gopalan (NASA Ames)
Fourth from Tim Teichmann (KIT)

1 cll
model of Cercignani, Lampis, and Lord
accommodation coeffs for normal, tangential, rot & vib energy

2 td
thermal desorption model of Krishnan Gopalan
scattering with thermal Maxwell-Boltzmann distribution

3 impulsive
complex collision model (8 params) of Krishnan Gopalan
appropriate for high-energy beam of particles
scattering can be highly anisotropic

4 adiabatic
model of Mohammadzadeh, Rana, and Struchtrup
isotropic scattering with conserved velocity magnitude
no energy transfer between particles and surface

5 specular noslip option = reflect all components
23 / 52

On-surface chemistry model for explicit surfs

Also from Krishnan Gopalan (NASA Ames)

Surf react adsorb command

Supports both gas/surf (GS) and surf/surf (PS) models

Input reaction file defines GS and PS reactions of various kinds

For PS, gas particles can adsorb/desorb to/from surface

For PS, define on-surface chemical species

For PS, each triangle maintains state

per-species and total counts of adsorbed particles

For PS, chemical reactions performed every Nsync steps

each triangle advances its state by (dt * Nsync)
network of on-surf chemical reactions invoked probabilistically
time counter algorithm used

See examples/surf react adsorb folder

24 / 52

Similar on-surface chemistry model for implicit surfs

Work by Victoria Arias from Kelly Stephani group at UIUC
Work in progress - not yet released in public SPARTA

New surf react implicit command

Same model and GS/PS options as for
surf react adsorb command for explicit surfaces

But for implicit surfaces

Surface state is now per-grid cell, for all triangles in cell

Area of surfs within a grid cell is now a dynamic quantity

Enables ablation to be driven by GS + PS chemistry

25 / 52

Two options for thermostatting particles

Thermostatting is useful to keep aggregate temperature
of particles near a specified target temperature

Can ramp target T up or down during a simulation

Can compensate for energy added to or lost from the system

Fix temp/global/rescale command

Rescale particle velocities for entire system every N steps

Only applied to translational degrees of freedom

Assumes net COM velocity of system is zero

Fix temp/rescale command

Rescale particle velocities within each grid cell every N steps

Only adjusts thermal temperature

Per-grid-cell COM velocity is subtracted before rescaling

See examples/thermostat folder

26 / 52

Two options for thermostatting particles

Thermostatting is useful to keep aggregate temperature
of particles near a specified target temperature

Can ramp target T up or down during a simulation

Can compensate for energy added to or lost from the system

Fix temp/global/rescale command

Rescale particle velocities for entire system every N steps

Only applied to translational degrees of freedom

Assumes net COM velocity of system is zero

Fix temp/rescale command

Rescale particle velocities within each grid cell every N steps

Only adjusts thermal temperature

Per-grid-cell COM velocity is subtracted before rescaling

See examples/thermostat folder

26 / 52

Two options for thermostatting particles

Thermostatting is useful to keep aggregate temperature
of particles near a specified target temperature

Can ramp target T up or down during a simulation

Can compensate for energy added to or lost from the system

Fix temp/global/rescale command

Rescale particle velocities for entire system every N steps

Only applied to translational degrees of freedom

Assumes net COM velocity of system is zero

Fix temp/rescale command

Rescale particle velocities within each grid cell every N steps

Only adjusts thermal temperature

Per-grid-cell COM velocity is subtracted before rescaling

See examples/thermostat folder

26 / 52

Two options for thermostatting particles

Thermostatting is useful to keep aggregate temperature
of particles near a specified target temperature

Can ramp target T up or down during a simulation

Can compensate for energy added to or lost from the system

Fix temp/global/rescale command

Rescale particle velocities for entire system every N steps

Only applied to translational degrees of freedom

Assumes net COM velocity of system is zero

Fix temp/rescale command

Rescale particle velocities within each grid cell every N steps

Only adjusts thermal temperature

Per-grid-cell COM velocity is subtracted before rescaling

See examples/thermostat folder
26 / 52

Create particles cut option for cut/split cells

2d test problem from examples/spiky

cut no cut yes (new default)

More robust particle initialization
27 / 52

External global field options - see examples/bfield

Specify an external field which accelerates particles
Can be constant or time-varying or spatially-varying

Global field command with 3 options:
Constant magnitude x y z =⇒ gravity

static field with magnitude in (x,y,z) direction

Particle fix-ID =⇒ magnetic field
fix-ID for fix field/particle command
field with 3 components applied to each particle
each component is a particle-style variable (formula)
can depend on timestep and particle x, v, mass, mu

Grid fix-ID Nfreq =⇒ turbulence driver
fix-ID for fix field/grid command
field with 3 components applied to each particle
each component is a grid-style variable (formula)
can depend on timestep and grid cell position
Nfreq = how often grid-cell field is re-evaluated

Grid option is computationally cheaper than particle option

28 / 52

External global field options - see examples/bfield

Specify an external field which accelerates particles
Can be constant or time-varying or spatially-varying

Global field command with 3 options:
Constant magnitude x y z =⇒ gravity

static field with magnitude in (x,y,z) direction
Particle fix-ID =⇒ magnetic field

fix-ID for fix field/particle command
field with 3 components applied to each particle
each component is a particle-style variable (formula)
can depend on timestep and particle x, v, mass, mu

Grid fix-ID Nfreq =⇒ turbulence driver
fix-ID for fix field/grid command
field with 3 components applied to each particle
each component is a grid-style variable (formula)
can depend on timestep and grid cell position
Nfreq = how often grid-cell field is re-evaluated

Grid option is computationally cheaper than particle option

28 / 52

External global field options - see examples/bfield

Specify an external field which accelerates particles
Can be constant or time-varying or spatially-varying

Global field command with 3 options:
Constant magnitude x y z =⇒ gravity

static field with magnitude in (x,y,z) direction
Particle fix-ID =⇒ magnetic field

fix-ID for fix field/particle command
field with 3 components applied to each particle
each component is a particle-style variable (formula)
can depend on timestep and particle x, v, mass, mu

Grid fix-ID Nfreq =⇒ turbulence driver
fix-ID for fix field/grid command
field with 3 components applied to each particle
each component is a grid-style variable (formula)
can depend on timestep and grid cell position
Nfreq = how often grid-cell field is re-evaluated

Grid option is computationally cheaper than particle option

28 / 52

External global field options - see examples/bfield

Specify an external field which accelerates particles
Can be constant or time-varying or spatially-varying

Global field command with 3 options:
Constant magnitude x y z =⇒ gravity

static field with magnitude in (x,y,z) direction
Particle fix-ID =⇒ magnetic field

fix-ID for fix field/particle command
field with 3 components applied to each particle
each component is a particle-style variable (formula)
can depend on timestep and particle x, v, mass, mu

Grid fix-ID Nfreq =⇒ turbulence driver
fix-ID for fix field/grid command
field with 3 components applied to each particle
each component is a grid-style variable (formula)
can depend on timestep and grid cell position
Nfreq = how often grid-cell field is re-evaluated

Grid option is computationally cheaper than particle option
28 / 52

Couple surface temperatures to flow conditions

From Arnaud Borner (NASA Ames)

Fix surf/temp command

Takes a compute or fix ID which calculates per-surf heat flux

Uses Stefan-Boltzmann law for a gray-body

Qwall = σ ϵsurf Tsurf
4

Resets surface temperature as function of heat flux

Can re-compute surf temperatures every N steps

Surface temperature affects future particle/surf collisions

See examples/adjust temp folder

29 / 52

Topic #3

1 Advanced features in SPARTA

2 New features since last DSMC19 conference

3 How data is stored and how parallelism operates

4 Custom attributes for particles, grid cells, surface elements

5 How to add new features and models to the code

6 Q & A about features you might like to add

30 / 52

Three flavors of data in DSMC

Particles, grid cells, and surface elements (triangles)

100 bytes per particle

ID, species index, grid cell, x, v, rotate & vibrate energy

200 bytes per grid cell

ID, level in grid hierarchy, lo/hi corner points, volume, flags

list of neighboring grid cells

list of intersecting surfs, more info if a split cell

125 bytes per triangle

ID, flags, indices of collision and reaction models

coords of 3 corner points, normal vector

31 / 52

Grid decomposition in SPARTA

Grid can be hierarchical (adapted)
Each processor owns a unique subset of the grid cells
Can be scattered or clumped

For scattered, each proc stores ghost copy of all grid cells
For clumped, each proc stores only ghost cells within a cutoff

command: global gridcut 0.1
good setting = max particle move distance for 1 timestep

Ghost cells enable tracking particle moves to end of timestep

32 / 52

Grid decomposition in SPARTA

Grid can be hierarchical (adapted)
Each processor owns a unique subset of the grid cells
Can be scattered or clumped

For scattered, each proc stores ghost copy of all grid cells
For clumped, each proc stores only ghost cells within a cutoff

command: global gridcut 0.1
good setting = max particle move distance for 1 timestep

Ghost cells enable tracking particle moves to end of timestep
32 / 52

Particle and surface element decomposition in SPARTA

Particles:

Each processor owns only the particles in its owned grid cells

No ghost particles

Surface elements (triangles):

Decomposition can be global or distributed

For global, each proc owns copy of all triangles

Typically best if a modest number of triangles (10K or less)

For distributed, each proc owns copy of only triangles
which overlap its owned + ghost grid cells

Triangles for ghost cells needed to track particles

Implicit triangles are always distributed (with grid cells)

33 / 52

Particle and surface element decomposition in SPARTA

Particles:

Each processor owns only the particles in its owned grid cells

No ghost particles

Surface elements (triangles):

Decomposition can be global or distributed

For global, each proc owns copy of all triangles

Typically best if a modest number of triangles (10K or less)

For distributed, each proc owns copy of only triangles
which overlap its owned + ghost grid cells

Triangles for ghost cells needed to track particles

Implicit triangles are always distributed (with grid cells)

33 / 52

Parallel communication each timestep

Each timestep:
1 each particle is ray-traced thru one or more grid cells
2 can bounce off triangles, perform surface chemistry
3 send particles to new processors that own final grid cells

If cutoff is sufficient: one communication after all moves
else: multiple move/comm iterations within timestep

34 / 52

Parallel communication each timestep

Each timestep:
1 each particle is ray-traced thru one or more grid cells
2 can bounce off triangles, perform surface chemistry
3 send particles to new processors that own final grid cells

If cutoff is sufficient: one communication after all moves
else: multiple move/comm iterations within timestep

34 / 52

Topic #4

1 Advanced features in SPARTA

2 New features since last DSMC19 conference

3 How data is stored and how parallelism operates

4 Custom attributes for particles, grid cells, surface elements

5 How to add new features and models to the code

6 Q & A about features you might like to add

35 / 52

Custom attributes for particles, grid cells, surface elements

Motivation:

New models and features may require new kinds of data

Either for particles, grid cells, or surface elements (triangles)

Beyond the stored data previously summarized

Input script can define various custom attributes:

Each is either for particles, grid cells, or triangles

Each attribute has a name, so can be referenced elsewhere

Each has a data type (integer or floating point)
Each has a size

custom vector = one value per particle/cell/surf
custom array = multiple values per particle/cell/surf

Parts of what is described here are already available in SPARTA

Other parts are new enhancements

Currently in GitHub pull request #428, will be released soon

36 / 52

Custom attributes for particles, grid cells, surface elements

Motivation:

New models and features may require new kinds of data

Either for particles, grid cells, or surface elements (triangles)

Beyond the stored data previously summarized

Input script can define various custom attributes:

Each is either for particles, grid cells, or triangles

Each attribute has a name, so can be referenced elsewhere

Each has a data type (integer or floating point)
Each has a size

custom vector = one value per particle/cell/surf
custom array = multiple values per particle/cell/surf

Parts of what is described here are already available in SPARTA

Other parts are new enhancements

Currently in GitHub pull request #428, will be released soon

36 / 52

Custom attributes for particles, grid cells, surface elements

Motivation:

New models and features may require new kinds of data

Either for particles, grid cells, or surface elements (triangles)

Beyond the stored data previously summarized

Input script can define various custom attributes:

Each is either for particles, grid cells, or triangles

Each attribute has a name, so can be referenced elsewhere

Each has a data type (integer or floating point)
Each has a size

custom vector = one value per particle/cell/surf
custom array = multiple values per particle/cell/surf

Parts of what is described here are already available in SPARTA

Other parts are new enhancements

Currently in GitHub pull request #428, will be released soon
36 / 52

Commands which define or use custom attributes

All 3 flavors of attributes: (particle, grid cell, or triangle)

custom command - create and/or set values of an attribute

set via corresponding variable style
particle-style, grid-style, or new surf-style variables

compute reduce - reduce attribute to a scalar value

dump - output attributes to a particle/grid/surf dump file

variable command - use attribute in a variable formula

Per-particle custom attributes:

fix ambipolar - uses a vector and array for ambipolar quantities

37 / 52

Commands which define or use custom attributes

All 3 flavors of attributes: (particle, grid cell, or triangle)

custom command - create and/or set values of an attribute

set via corresponding variable style
particle-style, grid-style, or new surf-style variables

compute reduce - reduce attribute to a scalar value

dump - output attributes to a particle/grid/surf dump file

variable command - use attribute in a variable formula

Per-particle custom attributes:

fix ambipolar - uses a vector and array for ambipolar quantities

37 / 52

Commands which define or use custom attributes

Per-surf custom attributes:

fix surf/temp - vector to calculate/store surface temps

surf react adsorb - vectors and array to store chemical state

surf collide - vector temperature for particle/surf collisions

fix ave/surf - time-average an attribute

read surf - define and initialize attributes

write surf - write attributes to a surf data file

Per-grid custom attributes:

surf react implicit - vectors and array to store chemical state

fix ave/grid - time-average an attribute

read grid - define and initialize attributes

write grid - write attributes to a grid data file

38 / 52

Commands which define or use custom attributes

Per-surf custom attributes:

fix surf/temp - vector to calculate/store surface temps

surf react adsorb - vectors and array to store chemical state

surf collide - vector temperature for particle/surf collisions

fix ave/surf - time-average an attribute

read surf - define and initialize attributes

write surf - write attributes to a surf data file

Per-grid custom attributes:

surf react implicit - vectors and array to store chemical state

fix ave/grid - time-average an attribute

read grid - define and initialize attributes

write grid - write attributes to a grid data file
38 / 52

Additional functionality of custom attributes

Per-surf attributes for either global or distributed surfs

Per-grid attributes optionally stored with ghost grid cells

likewise with surfs that overlap ghost grid cells

Migrate with owning particle/grid/surf when load-balancing

Stored in restart files

39 / 52

Topic #5

1 Advanced features in SPARTA

2 New features since last DSMC19 conference

3 How data is stored and how parallelism operates

4 Custom attributes for particles, grid cells, surface elements

5 How to add new features and models to the code

6 Q & A about features you might like to add

40 / 52

SPARTA is designed to be extensible

Enabled by C++ object orientation and SPARTA styles

See Section modify of manual for overview

Also discussed in 2019 Phys Fluids SPARTA overview paper

Before you start writing code you may want to ask:

can SPARTA already do this ?
how hard would it be to implement ?
is my plan a good way to implement this idea ?

Three ways to ask these Qs:

post a message to the mail list
post an issue on the GitHub site
email the developers (Stan, Michael, Steve)

We can give you some feedback/advice on your idea

41 / 52

SPARTA is designed to be extensible

Enabled by C++ object orientation and SPARTA styles

See Section modify of manual for overview

Also discussed in 2019 Phys Fluids SPARTA overview paper

Before you start writing code you may want to ask:

can SPARTA already do this ?
how hard would it be to implement ?
is my plan a good way to implement this idea ?

Three ways to ask these Qs:

post a message to the mail list
post an issue on the GitHub site
email the developers (Stan, Michael, Steve)

We can give you some feedback/advice on your idea

41 / 52

SPARTA is designed to be extensible

Enabled by C++ object orientation and SPARTA styles

See Section modify of manual for overview

Also discussed in 2019 Phys Fluids SPARTA overview paper

Before you start writing code you may want to ask:

can SPARTA already do this ?
how hard would it be to implement ?
is my plan a good way to implement this idea ?

Three ways to ask these Qs:

post a message to the mail list
post an issue on the GitHub site
email the developers (Stan, Michael, Steve)

We can give you some feedback/advice on your idea

41 / 52

Idea #1 - Couple SPARTA to another code

Not really modifying SPARTA, other code has new functionality

Other code calls SPARTA

see Section howto 6.6: Library interface to SPARTA
C-style, so can be called from C++/C/Fortran/Python
easy to extend, just add functions to library.cpp/h
add wrapper method to python/sparta.py for Python
example: umbrella Python script can invoke
SPARTA and other code, pass info between them

SPARTA calls other code

see Section howto 6.7: Coupling SPARTA to other codes
wrap the other code in a compute or fix
pass appropriate SPARTA data (e.g. particle or grid data)
other code returns new data (e.g. to alter BC)
when build SPARTA, link with the other code

42 / 52

Idea #1 - Couple SPARTA to another code

Not really modifying SPARTA, other code has new functionality

Other code calls SPARTA

see Section howto 6.6: Library interface to SPARTA
C-style, so can be called from C++/C/Fortran/Python
easy to extend, just add functions to library.cpp/h
add wrapper method to python/sparta.py for Python
example: umbrella Python script can invoke
SPARTA and other code, pass info between them

SPARTA calls other code

see Section howto 6.7: Coupling SPARTA to other codes
wrap the other code in a compute or fix
pass appropriate SPARTA data (e.g. particle or grid data)
other code returns new data (e.g. to alter BC)
when build SPARTA, link with the other code

42 / 52

Idea #1 - Couple SPARTA to another code

Not really modifying SPARTA, other code has new functionality

Other code calls SPARTA

see Section howto 6.6: Library interface to SPARTA
C-style, so can be called from C++/C/Fortran/Python
easy to extend, just add functions to library.cpp/h
add wrapper method to python/sparta.py for Python
example: umbrella Python script can invoke
SPARTA and other code, pass info between them

SPARTA calls other code

see Section howto 6.7: Coupling SPARTA to other codes
wrap the other code in a compute or fix
pass appropriate SPARTA data (e.g. particle or grid data)
other code returns new data (e.g. to alter BC)
when build SPARTA, link with the other code

42 / 52

Idea #2 - Write code for a new style

A style is a child class derived from a parent class

∼55% of SPARTA code base is add-on styles

Majority of recent new features mentioned were add-on styles

9 kinds of styles:

surf collide style = surface collision models

surf react style = surface reaction models

compute style = diagnostics

fix style = operations within timestep

collide style = gas collision models

react style = gas reaction models

region style = geometric regions

dump style = output of snapshots
command style = added input script commands

create box, balance grid, run, ...

43 / 52

Idea #2 - Write code for a new style

A style is a child class derived from a parent class

∼55% of SPARTA code base is add-on styles

Majority of recent new features mentioned were add-on styles

9 kinds of styles:

surf collide style = surface collision models

surf react style = surface reaction models

compute style = diagnostics

fix style = operations within timestep

collide style = gas collision models

react style = gas reaction models

region style = geometric regions

dump style = output of snapshots
command style = added input script commands

create box, balance grid, run, ...
43 / 52

Steps to write a new style

Section modify 10 in manual: Modifying & Extending SPARTA

Examine the parent *.h file which defines style interface
class variables the child class uses
methods a child class must define (pure virtual)
optional methods a child class can define (virtual)

Find an existing *.cpp/h child file similar to what you want
write a new child similar to that one
or derive from it if only need limited changes

Create fix foo.cpp/h, drop in src dir, re-build
Can now use fix ID foo ... in input script

#ifdef FIX CLASS

FixStyle(balance,FixBalance)

#else

class FixBalance : public Fix ...

#endif

44 / 52

Steps to write a new style

Section modify 10 in manual: Modifying & Extending SPARTA

Examine the parent *.h file which defines style interface
class variables the child class uses
methods a child class must define (pure virtual)
optional methods a child class can define (virtual)

Find an existing *.cpp/h child file similar to what you want
write a new child similar to that one
or derive from it if only need limited changes

Create fix foo.cpp/h, drop in src dir, re-build
Can now use fix ID foo ... in input script

#ifdef FIX CLASS

FixStyle(balance,FixBalance)

#else

class FixBalance : public Fix ...

#endif

44 / 52

Steps to write a new style

Section modify 10 in manual: Modifying & Extending SPARTA

Examine the parent *.h file which defines style interface
class variables the child class uses
methods a child class must define (pure virtual)
optional methods a child class can define (virtual)

Find an existing *.cpp/h child file similar to what you want
write a new child similar to that one
or derive from it if only need limited changes

Create fix foo.cpp/h, drop in src dir, re-build
Can now use fix ID foo ... in input script

#ifdef FIX CLASS

FixStyle(balance,FixBalance)

#else

class FixBalance : public Fix ...

#endif

44 / 52

Steps to write a new style

Section modify 10 in manual: Modifying & Extending SPARTA

Examine the parent *.h file which defines style interface
class variables the child class uses
methods a child class must define (pure virtual)
optional methods a child class can define (virtual)

Find an existing *.cpp/h child file similar to what you want
write a new child similar to that one
or derive from it if only need limited changes

Create fix foo.cpp/h, drop in src dir, re-build
Can now use fix ID foo ... in input script

#ifdef FIX CLASS

FixStyle(balance,FixBalance)

#else

class FixBalance : public Fix ...

#endif

44 / 52

Steps to write a new style

Section modify 10 in manual: Modifying & Extending SPARTA

Examine the parent *.h file which defines style interface
class variables the child class uses
methods a child class must define (pure virtual)
optional methods a child class can define (virtual)

Find an existing *.cpp/h child file similar to what you want
write a new child similar to that one
or derive from it if only need limited changes

Create fix foo.cpp/h, drop in src dir, re-build
Can now use fix ID foo ... in input script

#ifdef FIX CLASS

FixStyle(balance,FixBalance)

#else

class FixBalance : public Fix ...

#endif
44 / 52

Adding a new surface collision or reaction model

Surface collision models - see surf collide.h

define a collide() method, called when particle hits triangle

wrapper() and flags and coeffs() methods allow
surf react adsorb to emit particles from surface

each style can define its own input script arguments

parsed in constructor

surf collide specular and diffuse are simplest to study

Surface reaction models - see surf react.h

define a react() method, called from SurfCollide

each style can define its own input script arguments

parsed in constructor
can read its own file of enumerated reactions

surf react prob is simplest to study

45 / 52

Adding a new surface collision or reaction model

Surface collision models - see surf collide.h

define a collide() method, called when particle hits triangle

wrapper() and flags and coeffs() methods allow
surf react adsorb to emit particles from surface

each style can define its own input script arguments

parsed in constructor

surf collide specular and diffuse are simplest to study

Surface reaction models - see surf react.h

define a react() method, called from SurfCollide

each style can define its own input script arguments

parsed in constructor
can read its own file of enumerated reactions

surf react prob is simplest to study
45 / 52

Diagnostic calculations via computes

Compute commands calculate some property of system
Always for the current timestep
Other commands invoke computes and access their results

stats (logfile), dumps, fixes, variables

Computes produce these flavors of output data:
global: temp, count, boundary, ...
particle: ke/particle
grid: grid (nrho, ke, temp, etc), lambda/grid, sonine/grid, ...
explicit surfaces: surf (count, pressure, shear stress, ke, etc)
implicit surfaces: isurf/grid (same quantities)

To learn what compute styles SPARTA has ...
Commands link on webpage or doc/compute.html (k) = Kokkos

46 / 52

Diagnostic calculations via computes

Compute commands calculate some property of system
Always for the current timestep
Other commands invoke computes and access their results

stats (logfile), dumps, fixes, variables
Computes produce these flavors of output data:

global: temp, count, boundary, ...
particle: ke/particle
grid: grid (nrho, ke, temp, etc), lambda/grid, sonine/grid, ...
explicit surfaces: surf (count, pressure, shear stress, ke, etc)
implicit surfaces: isurf/grid (same quantities)

To learn what compute styles SPARTA has ...
Commands link on webpage or doc/compute.html (k) = Kokkos

46 / 52

Diagnostic calculations via computes

Compute commands calculate some property of system
Always for the current timestep
Other commands invoke computes and access their results

stats (logfile), dumps, fixes, variables
Computes produce these flavors of output data:

global: temp, count, boundary, ...
particle: ke/particle
grid: grid (nrho, ke, temp, etc), lambda/grid, sonine/grid, ...
explicit surfaces: surf (count, pressure, shear stress, ke, etc)
implicit surfaces: isurf/grid (same quantities)

To learn what compute styles SPARTA has ...
Commands link on webpage or doc/compute.html (k) = Kokkos

46 / 52

Adding a new compute

For global output:

define compute scalar(), compute vector(),
and/or compute array() methods

store result in scalar, vector[i], array[i][j] (see compute.h)
example: compute temp.cpp

loop over particles
MPI Allreduce of KE ⇒ scalar temperature

For per-particle output:

define a compute per particle() method
store result in vector particle[i], array particle[i][j]

Similar for per-grid or per-surf output:

per-grid styles loop over particles, tally to its grid cell
per-surf styles have surf tally() method,

called when a particle hits triangle
explicit surf styles are more complex,

because one triangle can span multiple procs

47 / 52

Adding a new compute

For global output:

define compute scalar(), compute vector(),
and/or compute array() methods

store result in scalar, vector[i], array[i][j] (see compute.h)
example: compute temp.cpp

loop over particles
MPI Allreduce of KE ⇒ scalar temperature

For per-particle output:

define a compute per particle() method
store result in vector particle[i], array particle[i][j]

Similar for per-grid or per-surf output:

per-grid styles loop over particles, tally to its grid cell
per-surf styles have surf tally() method,

called when a particle hits triangle
explicit surf styles are more complex,

because one triangle can span multiple procs

47 / 52

Adding a new compute

For global output:

define compute scalar(), compute vector(),
and/or compute array() methods

store result in scalar, vector[i], array[i][j] (see compute.h)
example: compute temp.cpp

loop over particles
MPI Allreduce of KE ⇒ scalar temperature

For per-particle output:

define a compute per particle() method
store result in vector particle[i], array particle[i][j]

Similar for per-grid or per-surf output:

per-grid styles loop over particles, tally to its grid cell
per-surf styles have surf tally() method,

called when a particle hits triangle
explicit surf styles are more complex,

because one triangle can span multiple procs

47 / 52

Adding a new fix

Fix commands can insert operations into the timestep loop

Via start of step() and end of step() methods

Define a setmask() method:
mask |= START OF STEP;

Loop over timesteps:

fix start-of-step emit/face, emit/face/file, emit/surf, ...

move particles
communicate particles
gas collisions and reactions

fix end-of-step ave/time, balance, adapt, move/surf, ...

output to screen and files

48 / 52

Adding a new fix

Fix commands can insert operations into the timestep loop

Via start of step() and end of step() methods

Define a setmask() method:
mask |= START OF STEP;

Loop over timesteps:
fix start-of-step emit/face, emit/face/file, emit/surf, ...
move particles
communicate particles
gas collisions and reactions
fix end-of-step ave/time, balance, adapt, move/surf, ...
output to screen and files

48 / 52

Other operations fixes can perform

Invoke & access output from computes or variables
fix ave/time, fix ave/grid, fix ave/surf

Generate output, similar to computes
global, per-particle, per-grid-cell, per-surf vectors/arrays
fix ave/time, fix ave/grid, fix ave/surf

Create new custom attributes
example: fix ambipolar has two per-particle attributes

ionambi = integer flag for ion or not
velambi[3] = velocity of electron associated with ion

example: fix surf/temp has one per-surf attribute
temperature = calculated triangle temperature

To learn what fix styles SPARTA has ...
Commands link on webpage or doc/fix.html (k) = Kokkos

49 / 52

Other operations fixes can perform

Invoke & access output from computes or variables
fix ave/time, fix ave/grid, fix ave/surf

Generate output, similar to computes
global, per-particle, per-grid-cell, per-surf vectors/arrays
fix ave/time, fix ave/grid, fix ave/surf

Create new custom attributes
example: fix ambipolar has two per-particle attributes

ionambi = integer flag for ion or not
velambi[3] = velocity of electron associated with ion

example: fix surf/temp has one per-surf attribute
temperature = calculated triangle temperature

To learn what fix styles SPARTA has ...
Commands link on webpage or doc/fix.html (k) = Kokkos

49 / 52

Other operations fixes can perform

Invoke & access output from computes or variables
fix ave/time, fix ave/grid, fix ave/surf

Generate output, similar to computes
global, per-particle, per-grid-cell, per-surf vectors/arrays
fix ave/time, fix ave/grid, fix ave/surf

Create new custom attributes
example: fix ambipolar has two per-particle attributes

ionambi = integer flag for ion or not
velambi[3] = velocity of electron associated with ion

example: fix surf/temp has one per-surf attribute
temperature = calculated triangle temperature

To learn what fix styles SPARTA has ...
Commands link on webpage or doc/fix.html (k) = Kokkos

49 / 52

Contribute your new code to public SPARTA

Why release your code as part of SPARTA ?
open source philosophy
fame & fortune, name on author webpage and in source code
attract users to your feature

find and fix bugs
extend its functionality
become collaborators

All new code is submitted thru GitHub
https://github.com/sparta/sparta
clone or fork repo
create new branch with your feature
submit a pull request

Key points for a speedy release:
doc pages for new commands, in SPARTA format (doc/*.txt)
new examples folder if useful (small and quick runs)
avoid changes (if possible) to core SPARTA files
ask developers ahead if you think changes are necessary

50 / 52

Contribute your new code to public SPARTA

Why release your code as part of SPARTA ?
open source philosophy
fame & fortune, name on author webpage and in source code
attract users to your feature

find and fix bugs
extend its functionality
become collaborators

All new code is submitted thru GitHub
https://github.com/sparta/sparta
clone or fork repo
create new branch with your feature
submit a pull request

Key points for a speedy release:
doc pages for new commands, in SPARTA format (doc/*.txt)
new examples folder if useful (small and quick runs)
avoid changes (if possible) to core SPARTA files
ask developers ahead if you think changes are necessary

50 / 52

Contribute your new code to public SPARTA

Why release your code as part of SPARTA ?
open source philosophy
fame & fortune, name on author webpage and in source code
attract users to your feature

find and fix bugs
extend its functionality
become collaborators

All new code is submitted thru GitHub
https://github.com/sparta/sparta
clone or fork repo
create new branch with your feature
submit a pull request

Key points for a speedy release:
doc pages for new commands, in SPARTA format (doc/*.txt)
new examples folder if useful (small and quick runs)
avoid changes (if possible) to core SPARTA files
ask developers ahead if you think changes are necessary

50 / 52

Final topic #6

1 Advanced features in SPARTA

2 New features since last DSMC19 conference

3 How data is stored and how parallelism operates

4 Custom attributes for particles, grid cells, surface elements

5 How to add new features and models to the code

6 Q & A about features you might like to add

51 / 52

Q & A time

Thanks again for your interest in SPARTA !

Remaining time is for you to ask Qs about:

1 This talk (or others)

2 SPARTA generally

3 Suggestion for a new feature you wish SPARTA had

4 Idea for a new feature you may want to add to the code

52 / 52

