
More Advanced SPARTA Capabilities

Steve Plimpton
Sandia National Labs
sjplimp@sandia.gov

DSMC15 Short Course
Sept 2015 - Kapaa, Hawaii



Outline - plus 15-minute break at ∼3 PM!

1 Parallelism
SPARTA algorithms and strong scaling

2 Input script options
variables
if/then/else and looping
running multiple simulations

3 How to do the following:

boundary conditions

particle species and mixtures

particle creation

gas-phase collision and
chemistry models

working with surfaces

create, read, move, delete
collision/chemistry models

adaptive gridding

load balancing

ambipolar approximation

diagnostic computes

time-averaging of stats

stats and dump output

use SPARTA as a library
2 / 31



Parallelization in SPARTA

Every processor owns copy of:
all parent grid cells (could be one or many)
geometry for all surface elements

Each processor owns 1/P subset of:
child grid cells (those not further subdivided)
particles (inside its child cells)
grid stats (for its child cells)
surface element stats

Assignment of cells to processors can be scattered or clumped

3 / 31



Ghost grid cells

Each processor also owns ghost cells

ghost cell = copy of another proc’s cell with geometry/surf info
enables particles to complete move without communication
for scattered decomp: each proc owns copy of all cells
for clumped decomposition: only nearby cells are ghosted

You set cutoff distance for ghost cells

command: global gridcut 0.1
good setting = max particle move distance for 1 timestep

4 / 31



Parallel communication each timestep

Each timestep:
1 each particle is ray-traced thru one or more grid cells
2 can bounce off surface elements, perform surface chemistry
3 send particles to new processors that own final grid cells

If cutoff is sufficient: one communication after all moves
else: multiple move/comm iterations within timestep

5 / 31



Parallel performance

Should get parallel speed-up so long as enough particles/proc
Parallel results ' serial results statistically, due to RNGs
Bench directory has 3 test problems

free molecular flow, collisional flow, flow around sphere
spa icc -v x 100 -v y 100 -v z 100 < in.collide

2 4 6 8 10 12
Processors

0

1

2

3

4

5

6

7

8
P
a
rt

ic
le

 m
o
v
e
s/

se
c/

co
re

 (
m

ill
io

n
s)

Strong scaling on a desktop machine

1M particles

3M particles

10M particles

100M particles

See http://sparta.sandia.gov/bench.html for more data
Michael will discuss large problem scalability on large HPC
machines

6 / 31



Parallel performance

Should get parallel speed-up so long as enough particles/proc
Parallel results ' serial results statistically, due to RNGs
Bench directory has 3 test problems

free molecular flow, collisional flow, flow around sphere
spa icc -v x 100 -v y 100 -v z 100 < in.collide

2 4 6 8 10 12
Processors

0

1

2

3

4

5

6

7

8
P
a
rt

ic
le

 m
o
v
e
s/

se
c/

co
re

 (
m

ill
io

n
s)

Strong scaling on a desktop machine

1M particles

3M particles

10M particles

100M particles

See http://sparta.sandia.gov/bench.html for more data
Michael will discuss large problem scalability on large HPC
machines

6 / 31



Define variables in input scripts

Styles: index, loop, equal, particle, world, ...

variable name index run1 run2 run3 run4
variable i loop 100
variable frac equal 100.0*c count[2]/np
variable vmag particle sqrt(vx*vx+vy*vy+vz*vz)
variable temp world 200.0 250.0 300.0 350.0
index style vars can be set from command line

Formulas can be complex

see doc/variable.html
stats keywords (step, np, vol, ...)
math operators & functions (sqrt, log, cos, ...)
various special functions (min, ave, trap, stride, stagger, ...)
particle vectors (x, vx, mass, ...)
output from computes, fixes, other variables

Formulas can be time-dependent

7 / 31



Define variables in input scripts

Styles: index, loop, equal, particle, world, ...

variable name index run1 run2 run3 run4
variable i loop 100
variable frac equal 100.0*c count[2]/np
variable vmag particle sqrt(vx*vx+vy*vy+vz*vz)
variable temp world 200.0 250.0 300.0 350.0
index style vars can be set from command line

Formulas can be complex

see doc/variable.html
stats keywords (step, np, vol, ...)
math operators & functions (sqrt, log, cos, ...)
various special functions (min, ave, trap, stride, stagger, ...)
particle vectors (x, vx, mass, ...)
output from computes, fixes, other variables

Formulas can be time-dependent

7 / 31



4 ways to use variables in input scripts

1 Substitute in any command via $x or ${myVar}
global fnum ${Fnum} nrho ${Nrho} vstream $v 0 0
read surf sdata.${fname}

2 Immediate formula evaluation via $() syntax:

avoids need to define separate one-time variable
variable xmid equal (xlo+xhi)/2
region 1 block ${xmid} EDGE INF INF EDGE EDGE
region 1 block $((xlo+xhi)/2) EDGE INF INF EDGE EDGE

3 Next command increments a variable to next value

4 Some commands allow variables as arguments

surf collide diffuse v temp 1.0
dump modify every v every
dump image ... view v theta v phi ...

8 / 31



More options for input scripts

Filename options:
dump.*.% for per-snapshot or per-processor output
read surf sdata.huge.gz
read restart old.restart.*

If/then/else via if command

Insert another script via include command
useful for long list of parameters

Invoke a shell command or external program
shell cd subdir1
shell my analyze out.file $n ${param}

Looping via next and jump commands
increment a parameter, run some more, repeat
loop over multiple runs (next slide)

Various ways to run multiple simulations from one script
see doc/Section howto 4.3

9 / 31



More options for input scripts

Filename options:
dump.*.% for per-snapshot or per-processor output
read surf sdata.huge.gz
read restart old.restart.*

If/then/else via if command

Insert another script via include command
useful for long list of parameters

Invoke a shell command or external program
shell cd subdir1
shell my analyze out.file $n ${param}

Looping via next and jump commands
increment a parameter, run some more, repeat
loop over multiple runs (next slide)

Various ways to run multiple simulations from one script
see doc/Section howto 4.3

9 / 31



Example script for multiple runs

Run 8 successive simulations on any number of processors:

variable a loop 8
variable rho index 1.0e18 4.0e18 1.0e19 4.0e19 ...
log log.$a
global nrho ${rho}
...
compute myGrid grid all n temp
dump 1 all grid 1000 dump.$a id c myGrid
run 100000
clear
next rho
next a
jump in.flow

Run 8 simulations on 3 partitions until finished:

change a & rho to universe-style variables
mpirun -np 12 spa mpi -p 3x4 -in in.flow

10 / 31



Example script for multiple runs

Run 8 successive simulations on any number of processors:

variable a loop 8
variable rho index 1.0e18 4.0e18 1.0e19 4.0e19 ...
log log.$a
global nrho ${rho}
...
compute myGrid grid all n temp
dump 1 all grid 1000 dump.$a id c myGrid
run 100000
clear
next rho
next a
jump in.flow

Run 8 simulations on 3 partitions until finished:

change a & rho to universe-style variables
mpirun -np 12 spa mpi -p 3x4 -in in.flow

10 / 31



Units and boundary conditions

Units command
two choices: cgs or si (maybe more at some point)
all input in units (up to you), all output in units

Dimension command = 2 or 3
Boundary command for each of 6 box faces (4 in 2d)

outflow, periodic, reflective, axisymmetric, surface
Each box face can also be inlet for particles (details later)

only really makes sense for outflow & surface boundaries

Surface boundary ⇒ assign collision, reaction models
surf collide command: specular or diffuse
surf react command: clone/delete or file of reactions

Axisymmetric only allowed for ylo face
requires ylo = 0.0 in create box command
particles move in 3d, projected back into 2d plane
line segments become 3d arcs for collision purposes
see global weight command for radial cell weighting
see doc/Section howto 4.2

11 / 31



Units and boundary conditions

Units command
two choices: cgs or si (maybe more at some point)
all input in units (up to you), all output in units

Dimension command = 2 or 3
Boundary command for each of 6 box faces (4 in 2d)

outflow, periodic, reflective, axisymmetric, surface
Each box face can also be inlet for particles (details later)

only really makes sense for outflow & surface boundaries
Surface boundary ⇒ assign collision, reaction models

surf collide command: specular or diffuse
surf react command: clone/delete or file of reactions

Axisymmetric only allowed for ylo face
requires ylo = 0.0 in create box command
particles move in 3d, projected back into 2d plane
line segments become 3d arcs for collision purposes
see global weight command for radial cell weighting
see doc/Section howto 4.2

11 / 31



Particle species

Species command

species ../data/air.species O2 N2 O ...
see data directory for provided species files

Sample lines from species data file (9 attributes/species):

# ID MolWt/Mass RotDof/Rel VibDof/Rel/T SpecWt Q
O2 32.00 5.31E-26 2 0.2 2 5.58659E-5 2256.0 1.0 0.0
N2 28.016 4.65E-26 2 0.2 2 1.90114E-5 3371.0 ...
O 16.00 2.65E-26 0 0.0 0 0.0 0.0 1.0 0.0
...

12 / 31



Particle mixtures

Mixture command

mixture = collection of species, with attributes
define as many mixtures as you like

Mixture attributes

global: nrho, temperature, stream vector
per-species: number fraction
groups = subsets of species within mixture

Mixture IDs are inputs to other commands:

fix emit/face mix-ID: create nrho/temp/vstream particles
collide vss mix-ID: define collision groups
compute grid mix-ID: tally grid stats by group

13 / 31



Particle creation

Create particles command:

N particles, or according to Fnum and mixture properties
only in grid cells not cut by surfs

Fix emit commands (multiple if desired):

emit/face = emit from one or more simulation box faces
emit/file = emit from face with profile from file
emit/surf = emit from surface elements
emit/surf/file (future): surf emission profile from file
options to limit by region, flow/normal dir, subset of surfs

14 / 31



Fix emit sampler - see examples/emit

15 / 31



Gas-phase collision models

Collide command
only VSS and VHS models at this point (may add others)
parameters come from *.vss files (see data dir)
VHS is simply VSS with α = 1.0

Sample lines from VSS data file (8 params/species):

# ID diam ω Tref α Zrot T* C1 C2
O2 3.96E-10 0.77 273.15 1.4 16.5 113.5 56.5 153.5
N2 4.07E-10 0.74 273.15 1.6 18.1 91.5 9.1 220.0
O 3.0E-10 0.80 273.15 1.0 0.0 0.0 0.0 0.0
...

Collide modify command
options for rotational and vibrational energy tracking
options for computing per-grid-cell collision counts

16 / 31



Gas-phase chemistry models

React command
Bird TCE or QK or hybrid TCE/QK models (may add others)
TCE = total collision energy model
QK = quantum kinetic model
reactions come from *.tce files (see data dir)

Dissociation:
O2 + N ⇒ O + O + N
D A 1.0 8.197e-19 1.660e-8 -1.5 -8.197e-19

Exchange:
NO + O ⇒ O2 + N
E A 0.0 2.684e-19 1.389e-17 0.0 -2.684e-19

Ionization:
N + e ⇒ N+ + e + e
I A 0.0 2.322e-18 4.1513E4 -3.82 -2.322e-18

Recombination: coming soon
requires 3rd collision partner for energy conservation

17 / 31



Surface element files

Surface files have simple syntax: see data/sdata.shuttle
Triangles for 3d, line segments for 2d or axisymmetric

# shuttle file (removed some blank lines)
310 points
616 triangles

Points
1 3.070224 -0.119728 0.996443
2 5.942016 -1.201900E-002 4.157199
...
310 -4.999492 -0.6817100 0.569242

Triangles (order of indices matters)
1 310 32 294
2 76 308 306
...
616 168 125 169

18 / 31



Reading surfaces

Creating surface element files

tools/stl2surf.py converts STL files
to SPARTA format

tools/surf create.py for simple shapes:

sphere, circle, box, rectangle, etc

Read surf command:

can use multiple times
options: translate, rotate, scale, invert, ...
can clip to simulation box

602 points ⇒ clipped to 321 points
1200 triangles ⇒ clipped to 600 tris
0.100631 min triangle edge length

same sphere file can be used
in different simulations

19 / 31



Defining surface element groups

Assign each surface element to one or more groups

by type index in surface file
by geometric region
see group command
some commands operate on a surface element group

compute surf, move surf, etc

Surface collision and reaction models

surf collide command: diffuse or specular
surf react command: clone/delete or file of reactions

Define as many models as you wish

assign each to a different group or surfaces
set different temperatures on different surf patches
define different reactions for different objects

20 / 31



Changing surface elements during a simulation

Add surfaces via read surf command, particle check option

Remove surf command

Move/rotate surfaces via move surf or fix move/surf

All operations are on group (subset) of surface elements

Allow new surf positions to be read from file (coming soon)

21 / 31



Adaptive gridding

Adapt means refine and/or coarsen hierarchical grid

Adapt grid command: once, before or between runs

Fix adapt command: on-the-fly adaptivity
Criteria:

nearness to surf, number of particles, mean-free path
any per-grid value calculated by a compute or fix

22 / 31



Load-balancing

Re-assign grid cells (and their particles) to procs

Balance grid command: static before or between runs

Fix balance command: dynamic load-balancing

Criteria:
by blocks, cell count or particle count via RCB
by CPU cost (not yet)

23 / 31



How recursive coordinate bisectioning (RCB) works

Breaks ties on cut planes

RCB is fast

Bigger cost is data move
1 billion grid cells on 1024 IBM BG/Q nodes (64K MPI tasks)

worst case: move all cells
balance time = 15 secs
RCB = 2, move = 12, ghosts = 1

24 / 31



Ambipolar approximation

Can be used for low-density plasmas (charged particles)

Ambipolar approximation:

electrons are not free particles
each electron stays close to parent ion (neutral gas)
can ignore electron’s small mass and high speed (1000x)
use a normal molecular timestep ⇒ efficiency win

Implementation details:

ion/electron move as one particle
ion stores extra velocity for electron
when perform collisions within cell, split into two particles

25 / 31



Ambipolar example

See examples/ambi and doc/Section howto 4.11

Fix ambipolar especies ion1 ion2 ...

Collide modify ambipolar yes

React command: include charged reactions in input file

26 / 31



Diagnostic quantities via computes

Compute commands calculate some property of system

Always for the current timestep

Other commands invoke them and access the results

stats output, dumps, fixes, variables

Categories

global: temp, count, boundary, ...
particle: ke
grid: grid (nrho, ke, temp, etc), lambda/grid, sonine/grid, ...
surface: surf (count, pressure, shear stress, ke, etc)

To learn what compute styles SPARTA has ...
doc/Section commands.html or doc/compute.html

27 / 31



Diagnostic quantities via computes

Compute commands calculate some property of system

Always for the current timestep

Other commands invoke them and access the results

stats output, dumps, fixes, variables

Categories

global: temp, count, boundary, ...
particle: ke
grid: grid (nrho, ke, temp, etc), lambda/grid, sonine/grid, ...
surface: surf (count, pressure, shear stress, ke, etc)

To learn what compute styles SPARTA has ...
doc/Section commands.html or doc/compute.html

27 / 31



Time-averaged statistics via fixes

Fix ave/time command: averaging of global values

Fix ave/grid command: averaging of grid cell values

Fix ave/surf command: averaging of surface element values

Can time average any value a compute or variable produces

Results can be output direct to file or via dump commands

Running averages or within time windows

3 examples:
1 compute 1 count all

compute myTemp temp
fix 1 ave/time 10 100 1000 c myTemp c 1 file out.ave

2 compute 2 grid all nrho ke temp erot
fix 2 ave/grid 100 10 1000 c 1
dump 2 grid all 1000 dump.grid.out id f 2

3 compute 3 surf all all n px py pz ke
fix 3 ave/surf 100 10 1000 c 3 ave running
dump 3 surf sphere1 5000 dump.surf.out id f 3

28 / 31



Time-averaged statistics via fixes

Fix ave/time command: averaging of global values

Fix ave/grid command: averaging of grid cell values

Fix ave/surf command: averaging of surface element values

Can time average any value a compute or variable produces

Results can be output direct to file or via dump commands

Running averages or within time windows
3 examples:

1 compute 1 count all
compute myTemp temp
fix 1 ave/time 10 100 1000 c myTemp c 1 file out.ave

2 compute 2 grid all nrho ke temp erot
fix 2 ave/grid 100 10 1000 c 1
dump 2 grid all 1000 dump.grid.out id f 2

3 compute 3 surf all all n px py pz ke
fix 3 ave/surf 100 10 1000 c 3 ave running
dump 3 surf sphere1 5000 dump.surf.out id f 3

28 / 31



Stats output

One line of output every N timesteps to screen and log file

See doc/stats style.html command

Any scalar can be output:

dozens of keywords: step, np, nbound, ncoll, nreact, cpu, ...
any scalar output of a compute or fix: c ID, c ID[N], f ID[N]

fix ave/time stores time-averaged quantities

equal-style variable: v MyVar

Can post-process via:

tools/log2txt.py log.sparta datafile (Step Np Ncoll ...)
tools/logplot.py log.sparta Step Ncollave
both can read stats output across multiple runs

29 / 31



Stats output

One line of output every N timesteps to screen and log file

See doc/stats style.html command

Any scalar can be output:

dozens of keywords: step, np, nbound, ncoll, nreact, cpu, ...
any scalar output of a compute or fix: c ID, c ID[N], f ID[N]

fix ave/time stores time-averaged quantities

equal-style variable: v MyVar

Can post-process via:

tools/log2txt.py log.sparta datafile (Step Np Ncoll ...)
tools/logplot.py log.sparta Step Ncollave
both can read stats output across multiple runs

29 / 31



Dump output

Snapshot of particle, grid, surface values every N timesteps

See doc/dump.html and dump modify commands

P/G/S attributes, compute/fix/variable results can be output

Can use as many dump commands as you wish

Output to one big file, file/proc, file/timestep, in between

Styles:

particle, grid, surf
image: instant JPG/PNG/PPM, rendered in parallel
movie: image ⇒ movie via FFmpeg

Can limit output by group, geometric region, threshold value

only particles of selected species (mixture)
only particles with velocity > vthresh
only grid cells in geometric region
only surf elements in surface group

30 / 31



Dump output

Snapshot of particle, grid, surface values every N timesteps

See doc/dump.html and dump modify commands

P/G/S attributes, compute/fix/variable results can be output

Can use as many dump commands as you wish

Output to one big file, file/proc, file/timestep, in between

Styles:

particle, grid, surf
image: instant JPG/PNG/PPM, rendered in parallel
movie: image ⇒ movie via FFmpeg

Can limit output by group, geometric region, threshold value

only particles of selected species (mixture)
only particles with velocity > vthresh
only grid cells in geometric region
only surf elements in surface group

30 / 31



Use SPARTA as a library

See doc/Section howto.html 4.6 and 4.7

C-style interface:
call from
C, C++, Fortran,
Python

See python and
python/examples
directories

Parallel python also
possible

% python
>>> from sparta import sparta
>>> spa = sparta()
>>> spa.file(“in.flow”)
>>> spa.command(“run 1000”)
>>> np =

spa.extract global(“nplocal”,0)
>>> temp =

spa.extract compute(“temp”,0,0)
>>> print “Np”,np,

”temperature”,temp
>>> spa.close()

31 / 31


