More Advanced SPARTA Capabilities

Steve Plimpton
Sandia National Labs
sjplimp@sandia.gov

DSMC15 Short Course
Sept 2015 - Kapaa, Hawaii

.’Pg
."'
Center for Computing Research

Sandia sandia National Laboratories is a multi-program laboratory managed and operated by Sandia 7 YA} ‘\Q&
National Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department ///’ v A' u._s
Laboratories of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. thonel Nuclear Socuriy Administration

Outline - plus 15-minute

o
2]

Parallelism

at ~3 PM!

e SPARTA algorithms and strong scaling

Input script options
e variables
o if/then/else and looping

e running multiple simulations

How to do the following:

boundary conditions
particle species and mixtures
particle creation

gas-phase collision and
chemistry models
working with surfaces

e create, read, move, delete
o collision/chemistry models

® 6 6 o o o o

adaptive gridding

load balancing
ambipolar approximation
diagnostic computes
time-averaging of stats
stats and dump output
use SPARTA as a library

Parallelization in SPARTA

@ Every processor owns copy of:
o all parent grid cells (could be one or many)
e geometry for all surface elements

@ Each processor owns 1/P subset of:
o child grid cells (those not further subdivided)
o particles (inside its child cells)
o grid stats (for its child cells)
o surface element stats

@ Assignment of cells to processors can be scattered or clumped

Ghost grid cells

@ Each processor also owns ghost cells

ghost cell = copy of another proc’s cell with geometry/surf info
enables particles to complete move without communication

for scattered decomp: each proc owns copy of all cells

for clumped decomposition: only nearby cells are ghosted

@ You set cutoff distance for ghost cells

e command: global gridcut 0.1
e good setting = max particle move distance for 1 timestep

Parallel communication each timestep

@ Each timestep:
@ each particle is ray-traced thru one or more grid cells
@ can bounce off surface elements, perform surface chemistry
© send particles to new processors that own final grid cells

o If cutoff is sufficient: one communication after all moves
else: multiple move/comm iterations within timestep

Parallel performance

@ Should get parallel speed-up so long as enough particles/proc
@ Parallel results ~ serial results statistically, due to RNGs
@ Bench directory has 3 test problems

e free molecular flow, collisional flow, flow around sphere

@ spa_icc -v x 100 -v y 100 -v z 100 < in.collide

Strong scaling on a desktop machine

8

~

o

o)

w

@-® 1M particles

@@ 3M particles

@-® 10M particles
100M particles

2 4 6 8 10 12
Processors

Particle moves/sec/core (millions)
N »

-

o

Parallel performance

@ Should get parallel speed-up so long as enough particles/proc
@ Parallel results ~ serial results statistically, due to RNGs
@ Bench directory has 3 test problems

e free molecular flow, collisional flow, flow around sphere

@ spa_icc -v x 100 -v y 100 -v z 100 < in.collide

Strong scaling on a desktop machine

AARRa

@-® 1M particles

@@ 3M particles

@-® 10M particles
100M particles

2 4 6 8 10 12
Processors

8

o~

o)

w

Particle moves/sec/core (millions)
N »

-

o

@ See http://sparta.sandia.gov/bench.html for more data
@ Michael will discuss large problem scalability on large HPC 6/31

Define variables in input scripts

o Styles: index, loop, equal, particle, world, ...
e variable name index runl run2 run3 run4

variable i loop 100

variable frac equal 100.0*c_count[2]/np

variable vmag particle sqrt(vx*vx+vy*vy+vz*vz)
variable temp world 200.0 250.0 300.0 350.0
index style vars can be set from command line

Define variables in input scripts

o Styles: index, loop, equal, particle, world, ...

e variable name index runl run2 run3 run4

variable i loop 100

variable frac equal 100.0*c_count[2]/np

variable vmag particle sqrt(vx*vx+vy*vy+vz*vz)
variable temp world 200.0 250.0 300.0 350.0
index style vars can be set from command line

@ Formulas can be complex

see doc/variable.html

stats keywords (step, np, vol, ...)

math operators & functions (sqrt, log, cos, ...)

various special functions (min, ave, trap, stride, stagger, ...)
particle vectors (x, vx, mass, ...)

output from computes, fixes, other variables

@ Formulas can be time-dependent

4 ways to use variables in input scripts

@ Substitute in any command via $x or ${myVar}

global fnum ${Fnum} nrho ${Nrho} vstream $v 0 0
read_surf sdata.${fname}

@ Immediate formula evaluation via $() syntax:

avoids need to define separate one-time variable

variable xmid equal (xlo+xhi)/2

region 1 block ${xmid} EDGE INF INF EDGE EDGE
region 1 block $((xlo+xhi)/2) EDGE INF INF EDGE EDGE

© Next command increments a variable to next value

@ Some commands allow variables as arguments

surf_collide diffuse v_temp 1.0
dump_modify every v_every

e dump image ... view v_theta v_phi ...

More options for input scripts

@ Filename options:
o dump.*.% for per-snapshot or per-processor output
o read_surf sdata.huge.gz
o read_restart old.restart.*
e If/then/else via if command
@ Insert another script via include command
o useful for long list of parameters

More options for input scripts

@ Filename options:
o dump.*.% for per-snapshot or per-processor output
o read_surf sdata.huge.gz
o read_restart old.restart.*
e If/then/else via if command
@ Insert another script via include command
o useful for long list of parameters
@ Invoke a shell command or external program
o shell cd subdirl
o shell my_analyze out.file $n ${param}
@ Looping via next and jump commands
e increment a parameter, run some more, repeat
e loop over multiple runs (next slide)
@ Various ways to run multiple simulations from one script

e see doc/Section_howto 4.3

Example script for multiple runs

Run 8 successive simulations on any number of processors:

variable
variable
log
global

compute
dump
run
clear
next
next

Jjump

a loop 8

rho index 1.0e18 4.0e18 1.0e19 4.0e19 ...

log.$a
nrho ${rho}

myGrid grid all n temp
1 all grid 1000 dump.$a id c_myGrid
100000

rho
a
in.flow

10/31

Example script for multiple runs

Run 8 successive simulations on any number of processors:

variable a loop 8

variable rho index 1.0el8 4.0el18 1.0el9 4.0el9 ...
log log.$a

global nrho ${rho}

compute myGrid grid all n temp

dump 1 all grid 1000 dump.$a id c_myGrid
run 100000

clear

next rho

next a

jump in.flow

Run 8 simulations on 3 partitions until finished:

@ change a & rho to universe-style variables
@ mpirun -np 12 spa_mpi -p 3x4 -in in.flow

10/31

Units and boundary conditions

Units command
e two choices: cgs or si (maybe more at some point)
o all input in units (up to you), all output in units
Dimension command = 2 or 3
Boundary command for each of 6 box faces (4 in 2d)
e outflow, periodic, reflective, axisymmetric, surface
Each box face can also be inlet for particles (details later)
o only really makes sense for outflow & surface boundaries

11/31

Units and boundary conditions

Units command
e two choices: cgs or si (maybe more at some point)
o all input in units (up to you), all output in units
Dimension command = 2 or 3
Boundary command for each of 6 box faces (4 in 2d)
e outflow, periodic, reflective, axisymmetric, surface
Each box face can also be inlet for particles (details later)
o only really makes sense for outflow & surface boundaries
@ Surface boundary = assign collision, reaction models
e surf_collide command: specular or diffuse
e surf_react command: clone/delete or file of reactions
@ Axisymmetric only allowed for ylo face
e requires ylo = 0.0 in create_box command
particles move in 3d, projected back into 2d plane
line segments become 3d arcs for collision purposes
see global weight command for radial cell weighting
see doc/Section_howto 4.2

11/31

Particle species

@ Species command

e species ../data/air.species 02 N2 O ...
e see data directory for provided species files

e Sample lines from species data file (9 attributes/species):

ID MolWt/Mass RotDof/Rel VibDof/Rel/T SpecWt Q
02 32.00 5.31E-26 2 0.2 2 5.58659E-5 2256.0 1.0 0.0
N2 28.016 4.65E-26 90114E-5 3371.0 ...

20.221.
0 16.00 2.65E-26 0 0.0 0 0.0 0.0 1.0 0.0

2
0

12/31

Particle mixtures

@ Mixture command
e mixture = collection of species, with attributes
o define as many mixtures as you like
o Mixture attributes
e global: nrho, temperature, stream vector
e per-species: number fraction
e groups = subsets of species within mixture
@ Mixture IDs are inputs to other commands:
o fix emit/face mix-ID: create nrho/temp/vstream particles
o collide vss mix-1D: define collision groups
e compute grid mix-1D: tally grid stats by group

13/31

Particle creation

o Create_particles command:

N particles, or according to Fnum and mixture properties
only in grid cells not cut by surfs

e Fix emit commands (multiple if desired):

emit/face = emit from one or more simulation box faces
emit/file = emit from face with profile from file
emit/surf = emit from surface elements

emit/surf/file (future): surf emission profile from file
options to limit by region, flow/normal dir, subset of surfs

14 /31

Fix emit sampler - see examples/emit

Gas-phase collision models

e Collide command
e only VSS and VHS models at this point (may add others)
o parameters come from *.vss files (see data dir)
o VHS is simply VSS with a = 1.0

@ Sample lines from VSS data file (8 params/species):

ID diam w Tref a Zrot T*x C1 C2

02 3.96E-10 0.77 273.15 1.4 16.5 113.5 56.5 153.5
N2 4.07E-10 0.74 273.15 1.6 18.1 91.5 9.1 220.0
0 3.0E-10 0.80 273.15 1.0 0.0 0.0 0.0 0.0

e Collide_modify command
e options for rotational and vibrational energy tracking
e options for computing per-grid-cell collision counts
16 /31

Gas-phase chemistry models

@ React command

o Bird TCE or QK or hybrid TCE/QK models (may add others)

e TCE = total collision energy model

e QK = quantum kinetic model

e reactions come from *.tce files (see data dir)
Dissociation:

e 024+ N=0+0+N

e DA1.08.197e-19 1.660e-8 -1.5 -8.197e-19
Exchange:

e NO+0O0=02+N

o E A0.02.684e-19 1.389e-17 0.0 -2.684e-19
@ lonization:

o N+e=N++e+e

e | A0.02.322e-18 4.1513E4 -3.82 -2.322¢-18
Recombination: coming soon

e requires 3rd collision partner for energy conservation

17/31

Surface element files

@ Surface files have simple syntax: see data/sdata.shuttle
@ Triangles for 3d, line segments for 2d or axisymmetric

shuttle file (removed some blank lines)
310 points
616 triangles

Points
1 3.070224 -0.119728 0.996443
2 5.942016 -1.201900E-002 4.157199

310 -4.999492 -0.6817100 0.569242
Triangles (order of indices matters)
1 310 32 294

2 76 308 306

616 168 125 169

18/31

Reading surfaces

o Creating surface element files

o tools/stl2surf.py converts STL files
to SPARTA format

o tools/surf_create.py for simple shapes:
@ sphere, circle, box, rectangle, etc

@ Read_surf command:

e can use multiple times
e options: translate, rotate, scale, invert, ...
@ can clip to simulation box
602 points = clipped to 321 points
1200 triangles = clipped to 600 tris
0.100631 min triangle edge length
same sphere file can be used
in different simulations

19/31

Defining surface element groups

@ Assign each surface element to one or more groups
by type index in surface file
by geometric region

see group command
some commands operate on a surface element group

@ compute surf, move_surf, etc
@ Surface collision and reaction models
e surf_collide command: diffuse or specular
e surf_react command: clone/delete or file of reactions
@ Define as many models as you wish

e assign each to a different group or surfaces
o set different temperatures on different surf patches
o define different reactions for different objects

20/31

Changing surface elements during a simulation

Add surfaces via read_surf command, particle check option
Remove_surf command
Move/rotate surfaces via move_surf or fix move/surf

All operations are on group (subset) of surface elements

Allow new surf positions to be read from file (coming soon)

21/31

Adaptive gridding

Adapt means refine and/or coarsen hierarchical grid
Adapt_grid command: once, before or between runs
Fix adapt command: on-the-fly adaptivity

Criteria:

e nearness to surf, number of particles, mean-free path
e any per-grid value calculated by a compute or fix

Load-balancing

Re-assign grid cells (and their particles) to procs
Balance_grid command: static before or between runs
Fix balance command: dynamic load-balancing

Criteria:

e by blocks, cell count or particle count via RCB
o by CPU cost (not yet)

23/31

How recursive coordinate bisectioning (RCB) works

Breaks ties on cut planes

o RCB is fast
o Bigger cost is data move
@ 1 billion grid cells on 1024 IBM BG/Q nodes (64K MPI tasks)

e worst case: move all cells
o balance time = 15 secs
e RCB = 2, move = 12, ghosts = 1

24 /31

Ambipolar approximation

@ Can be used for low-density plasmas (charged particles)

@ Ambipolar approximation:

electrons are not free particles

each electron stays close to parent ion (neutral gas)

can ignore electron’s small mass and high speed (1000x)
use a normal molecular timestep = efficiency win

@ Implementation details:

e ion/electron move as one particle
e ion stores extra velocity for electron
e when perform collisions within cell, split into two particles

25/31

Ambipolar example

See examples/ambi and doc/Section_howto 4.11
Fix ambipolar especies ionl ion2 ...

Collide_modify ambipolar yes

React command: include charged reactions in input file

26/31

Diagnostic quantities via computes

@ Compute commands calculate some property of system
@ Always for the current timestep
@ Other commands invoke them and access the results
e stats output, dumps, fixes, variables
o Categories
e global: temp, count, boundary, ...
e particle: ke
o grid: grid (nrho, ke, temp, etc), lambda/grid, sonine/grid, ...
o surface: surf (count, pressure, shear stress, ke, etc)

27/31

Diagnostic quantities via computes

Compute commands calculate some property of system

Always for the current timestep
Other commands invoke them and access the results

e stats output, dumps, fixes, variables
Categories

global: temp, count, boundary, ...

particle: ke

grid: grid (nrho, ke, temp, etc), lambda/grid, sonine/grid, ...
surface: surf (count, pressure, shear stress, ke, etc)

To learn what compute styles SPARTA has ...
doc/Section_commands.html or doc/compute.html

| boundary | count [distsurf/grid |grid[ke/particle lambda/grid
[property/grid[reduce | sonine/grid [surf| temp | tvib/grid

27/31

Time-averaged statistics via fixes

Fix ave/time command: averaging of global values

Fix ave/grid command: averaging of grid cell values

Fix ave/surf command: averaging of surface element values
Can time average any value a compute or variable produces
Results can be output direct to file or via dump commands

Running averages or within time windows

28/31

Time-averaged statistics via fixes

Fix ave/time command: averaging of global values
Fix ave/grid command: averaging of grid cell values
Fix ave/surf command: averaging of surface element values
Can time average any value a compute or variable produces
Results can be output direct to file or via dump commands
Running averages or within time windows
3 examples:
@ compute 1 count all
compute myTemp temp
fix 1 ave/time 10 100 1000 c_myTemp c_1 file out.ave
@ compute 2 grid all nrho ke temp erot
fix 2 ave/grid 100 10 1000 c-1
dump 2 grid all 1000 dump.grid.out id f_2
© compute 3 surf all all n px py pz ke
fix 3 ave/surf 100 10 1000 c_3 ave running
dump 3 surf spherel 5000 dump.surf.out id f_3

28 /31

Stats output

One line of output every N timesteps to screen and log file

@ See doc/stats_style.html command
@ Any scalar can be output:

e dozens of keywords: step, np, nbound, ncoll, nreact, cpu, ...
e any scalar output of a compute or fix: c_ID, c_ID[N], f_ID[N]

o fix ave/time stores time-averaged quantities
e equal-style variable: v_MyVar

29/31

Stats output

One line of output every N timesteps to screen and log file

@ See doc/stats_style.html command
@ Any scalar can be output:

e dozens of keywords: step, np, nbound, ncoll, nreact, cpu, ...
e any scalar output of a compute or fix: c_ID, c_ID[N], f_ID[N]

o fix ave/time stores time-averaged quantities
e equal-style variable: v_MyVar
@ Can post-process via:

o tools/log2txt.py log.sparta datafile (Step Np Ncoll ...)
e tools/logplot.py log.sparta Step Ncollave
e both can read stats output across multiple runs

29/31

Dump output

Snapshot of particle, grid, surface values every N timesteps

See doc/dump.html and dump_modify commands
P/G/S attributes, compute/fix/variable results can be output

o
o
@ Can use as many dump commands as you wish
o

Output to one big file, file/proc, file/timestep, in between

30/31

Dump output

Snapshot of particle, grid, surface values every N timesteps

See doc/dump.html and dump_modify commands

P/G/S attributes, compute/fix/variable results can be output

Can

use as many dump commands as you wish

Output to one big file, file/proc, file/timestep, in between

Styles:

Can

particle, grid, surf

image: instant JPG/PNG/PPM, rendered in parallel

movie: image = movie via FFmpeg

limit output by group, geometric region, threshold value
only particles of selected species (mixture)

only particles with velocity > vthresh

only grid cells in geometric region

only surf elements in surface group

30/31

Use SPARTA as a library

See doc/Section_howto.html 4.6 and 4.7

% python
>>> from sparta import sparta

@ C-style interface:
>>> spa = sparta()

call from >>> spa ﬁle(“In ﬂOW”)
C, Ct+, Fortran, >>> spa.command(“run 1000")
Python

>>>np =
® See python and spa.extract_global(“nplocal”,0)
python/examples >>> temp =
directories spa.extract_compute(“temp”,0,0)
o Parallel python also ~ >>> print “Np”,np,
possible "temperature” ,temp

>>> spa.close()

31/31

