
SPARTA Users Manual
20 Jan 2025 version

https://sparta.github.io - Sandia National Laboratories
Copyright (2014) Sandia Corporation. This software and manual is distributed under the GNU General Public License.

Table of Contents
SPARTA Documentation...1

20 Jan 2025 version...1
Version info:...1

1. Introduction...4
1.1 What is SPARTA..4
1.2 SPARTA features..4
General features..5
Models...5
Geometry...5
Gas-phase collisions and chemistry..5
Surface collisions and chemistry..5
Performance..5
Diagnostics..6
Output...6
Pre- and post-processing...6
1.3 Grids and surfaces in SPARTA..6
1.4 Open source distribution...8
1.5 Acknowledgments and citations...9

2. Getting Started...10
2.1 What's in the SPARTA distribution..10
2.2 Making SPARTA..10
2.3 Making SPARTA with optional packages..22
2.4 Building SPARTA as a library...24
2.5 Testing SPARTA..26
2.6 Running SPARTA..27
2.7 Command-line options..29
2.8 SPARTA screen output...32

3. Commands...35
3.1 SPARTA input script..35
3.2 Parsing rules..36
3.3 Input script structure...37
3.4 Commands listed by category...38
3.5 Individual commands..39
Fix styles...39
Compute styles..39
Collide styles...40
Surface collide styles..40
Surface reaction styles..40

4. Packages..41
FFT package..41
KOKKOS package..42

5. Accelerating SPARTA performance...45
5.1 Measuring performance..45
5.2 Packages with optimized styles..46
5.3 KOKKOS package..47

6. How-to discussions..55
6.1 2d simulations...55
6.2 Axisymmetric simulations..56

SPARTA Users Manual

i

Table of Contents
6.3 Running multiple simulations from one input script..56
6.4 Output from SPARTA (stats, dumps, computes, fixes, variables)...57
6.5 Visualizing SPARTA snapshots...61
6.6 Library interface to SPARTA...61
6.7 Coupling SPARTA to other codes..62
6.8 Details of grid geometry in SPARTA...63
6.9 Details of surfaces in SPARTA..67
6.10 Restarting a simulation...67
6.11 Using the ambipolar approximation..68
6.12 Using multiple vibrational energy levels..70
6.13 Surface elements: explicit, implicit, distributed...71
6.14 Implicit surface ablation...72
6.15 Transparent surface elements..73
6.16 Visualizing SPARTA output with ParaView..74
6.17 Custom per-particle, per-grid, per-surf attributes...78
6.18 Variable timestep simulations...79

7. Example problems...81
8. Performance & scalability...82
9. Additional tools...83

dump2cfg tool...83
dump2xyz tool..84
grid_refine tool..84
implicit_grid tool..84
jagged tools...84
log2txt tool..84
logplot tool..85
paraview tools...85
stl2surf tool...85
surf_create tool..85
surf_transform tool..86

10. Modifying & extending SPARTA...87
10.1 Compute styles..88
10.2 Fix styles...89
10.3 Region styles...89
10.4 Collision styles..89
10.5 Surface collision styles...90
10.6 Chemistry styles..90
10.7 Dump styles..90
10.8 Input script commands..91

11. Python interface to SPARTA..92
11.1 Building SPARTA as a shared library..93
11.2 Installing the Python wrapper into Python..93
11.3 Extending Python with MPI to run in parallel..94
11.4 Testing the Python-SPARTA interface...95
11.5 Using SPARTA from Python..97
11.6 Example Python scripts that use SPARTA...99

12. Errors...100
12.1 Common problems..100

SPARTA Users Manual

ii

Table of Contents
12.2 Reporting bugs..101
12.3 Error & warning messages..101
Errors:...101
Warnings:..123

13. Future and history..125
13.1 Coming attractions..125
13.2 Past versions..125

adapt_grid command...126
balance_grid command..131
bound_modify command...135
boundary command...137
clear command...139
collide command...140
collide_modify command..144
compute command...147
compute boundary command..150
compute count command...154
compute count/kk command..154
compute distsurf/grid command..156
compute distsurf/grid/kk command...156
compute dt/grid command...159
compute dt/grid/kk command..159
compute eflux/grid command..162
compute eflux/grid/kk command...162
compute fft/grid command..165
compute fft/grid/kk command...165
compute grid command...169
compute grid/kk command..169
compute isurf/grid command...174
compute ke/particle command...177
compute ke/particle/kk command..177
compute lambda/grid command..179
compute lambda/grid/kk command...179
compute pflux/grid command..183
compute pflux/grid/kk command..183
compute property/grid command..186
compute property/grid/kk command...186
compute property/surf command...188
compute react/boundary command..190
compute react/isurf/grid command..192
compute react/surf command..194
compute reduce command...196
compute sonine/grid command..200
compute sonine/grid/kk command..200
compute surf command...203
compute surf/kk command..203
compute temp command..210
compute temp/kk command..210

SPARTA Users Manual

iii

Table of Contents
compute thermal/grid command..212
compute thermal/grid/kk command...212
compute tvib/grid command..215
create_box command...218
create_grid command..219
create_isurf command...223
create_particles command...228
create_particles/kk command..228
custom command...234
dimension command..237
dump command...238
dump image command..238
dump image command..245
dump movie command..245

Rendering of particles...248
Rendering of grid cells..249
Rendering of surface elements..249

dump_modify command..255
echo command...265
fix command..266
fix ablate command...269
fix adapt command..275
fix adapt/kk command...275
fix ambipolar command...277
fix ambipolar command/kk..277
fix ave/grid command..279
fix ave/grid/kk command...279
fix ave/histo command..283
fix ave/histo/kk command...283
fix ave/histo/weight command..283
fix ave/histo/weight/kk command...283
fix ave/surf command..289
fix ave/time command...293
fix balance command...298
fix balance/kk command..298
fix dt/reset command...302
fix emit/face command..304
fix emit/face/kk command...304
fix emit/face/file command..308
fix emit/surf command..314
fix field/grid command..319
fix field/particle command..321
fix grid/check command..323
fix grid/check/kk command...323
fix halt command...325
fix move/surf command...327
fix move/surf/kk command..327
fix print command...329

SPARTA Users Manual

iv

Table of Contents
fix surf/temp command..331
fix temp/global/rescale command..333
fix temp/rescale command...335
fix temp/rescale/kk command..335
fix vibmode command...337
global command..339
group command...345
if command..348
include command...351
jump command..352
label command...354
log command...355
mixture command..356
move_surf command...360
next command...362
package command...364
partition command...366
print command...367
quit command..369
react command...370
react_modify command...376
read_grid command...378
read_isurf command..380
read_particles command..385
read_restart command...386
read_surf command...389
region command..398
remove_surf command..400
reset_timestep command...401
restart command..402
run command...404
scale_particles command...407
seed command...408
shell command...409
species command...411
species_modify command...414
stats command...415
stats_modify command..416
stats_style command..418
suffix command...422
surf_collide command...423
surf_modify command...433
surf_react command..435
surf_react adsorb command...435
surf_react adsorb command...439
timestep command...446
uncompute command...447
undump command...448

SPARTA Users Manual

v

Table of Contents
unfix command..449
units command...450
variable command...452

Math Operators...457
Math Functions...457
Special Functions..459
Particle Vectors...460
Grid Vectors..460
Compute References...460
Fix References..461
Custom Attribute References..462
Surface Collision and Surface Reaction Model References...462
Variable References..462

write_grid command..465
write_isurf command...467
write_restart command..469
write_surf command..471

SPARTA Users Manual

vi

SPARTA Documentation

20 Jan 2025 version

Version info:

The SPARTA "version" is the date when it was released, such as 3 Mar 2014. SPARTA is updated continuously.
Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this page of the WWW
site. Each dated copy of SPARTA contains all the features and bug-fixes up to and including that version date.
The version date is printed to the screen and logfile every time you run SPARTA. It is also in the file src/version.h
and in the SPARTA directory name created when you unpack a tarball, and at the top of the first page of the
manual (this page).

If you browse the HTML doc pages on the SPARTA WWW site, they always describe the most current
version of SPARTA.

•

If you browse the HTML doc pages included in your tarball, they describe the version you have.•
The PDF file on the WWW site or in the tarball is updated about once per month. This is because it is
large, and we don't want it to be part of very patch.

•

At some point, there also will be a Developer.pdf file in the doc directory, which describes the internal
structure and algorithms of SPARTA.

•

SPARTA stands for Stochastic PArallel Rarefied-gas Time-accurate Analyzer.

SPARTA is a Direct Simulation Montel Carlo (DSMC) simulator designed to run efficiently on parallel
computers. It was developed at Sandia National Laboratories, a US Department of Energy facility, with funding
from the DOE. It is an open-source code, distributed freely under the terms of the GNU Public License (GPL), or
sometimes by request under the terms of the GNU Lesser General Public License (LGPL).

The primary developers of SPARTA are Steve Plimpton, and Michael Gallis who can be contacted at sjplimp at
gmail.com and magalli at sandia.gov. The SPARTA WWW Site at https://sparta.github.io has more information
about the code and its uses.

The SPARTA documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the SPARTA documentation.

Once you are familiar with SPARTA, you may want to bookmark this page at Section_commands.html#comm
since it gives quick access to documentation for all SPARTA commands.

PDF file of the entire manual, generated by htmldoc

Introduction
1.1 What is SPARTA
1.2 SPARTA features
1.3 Grids and surfaces in SPARTA
1.4 Open source distribution
1.5 Acknowledgments and citations

1.

Getting started
2.1 What's in the SPARTA distribution
2.2 Making SPARTA
2.3 Building SPARTA with optional packages
2.4 Building SPARTA as a library

2.

1

https://sparta.github.io/bug.html
https://sparta.github.io/bug.html
https://sjplimp.github.io
https://sparta.github.io
http://www.easysw.com/htmldoc

2.5 Testing SPARTA
2.6 Running SPARTA
2.7 Command-line options
2.8 Screen output
Commands
3.1 SPARTA input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically

3.

Packages4.
Accelerating SPARTA performance
5.1 Measuring performance
5.2 Packages with optimized styles
5.3 KOKKOS package

5.

How-to discussions
6.1 2d simulations
6.2 Axisymmetric simulations
6.3 Running multiple simulations from one input script
6.4 Output from SPARTA
6.5 Visualizing SPARTA snapshots
6.6 Library interface to SPARTA
6.7 Coupling SPARTA to other codes
6.8 Details of grid geometry in SPARTA
6.9 Details of surfaces in SPARTA
6.10 Restarting a simulation
6.11 Using the ambipolar approximation
6.12 Using multiple vibrational energy levels
6.13 Surface elements: explicit, implicit, distributed
6.14 Implicit surface ablation
6.15 Transparent surface elements
6.16 Visualizing SPARTA output with ParaView
6.17 Custom per-particle, per-grid, per-surf attributes
6.18 Variable timestep simulations

6.

Example problems7.
Performance & scalability8.
Additional tools9.
Modifying & extending SPARTA
10.1 Compute styles
10.2 Fix styles
10.3 Region styles
10.4 Collision styles
10.5 Surface collision styles
10.6 Chemistry styles
10.7 Dump styles
10.8 Input script commands

10.

Python interface
11.1 Creating a shared MPI library
11.2 Extending Python with a parallel version of SPARTA
11.3 Extending Python with MPI
11.4 Testing the Python-SPARTA interface
11.5 Using SPARTA from Python

11.

2

11.6 Example Python scripts that use SPARTA
Errors
12.1 Common problems
12.2 Reporting bugs
12.3 Error & warning messages

12.

Future and history
13.1 Coming attractions
13.2 Past versions

13.

3

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

1. Introduction

These sections provide an overview of what SPARTA can do, describe what it means for SPARTA to be an
open-source code, and acknowledge the funding and people who have contributed to SPARTA.

1.1 What is SPARTA
1.2 SPARTA features
1.3 Grids and surfaces in SPARTA
1.4 Open source distribution
1.5 Acknowledgments and citations

1.1 What is SPARTA

SPARTA is a Direct Simulation Montel Carlo code that models rarefied gases, using collision, chemistry, and
boundary condition models. It uses a hierarchical Cartesian grid to track and group particles for 3d or 2d or
axisymmetric models. Objects emedded in the gas are represented as triangulated surfaces and cut through grid
cells.

For examples of SPARTA simulations, see the SPARTA WWW Site.

SPARTA runs efficiently on single-processor desktop or laptop machines, but is designed for parallel computers.
It will run on any parallel machine that compiles C++ and supports the MPI message-passing library. This
includes distributed- or shared-memory parallel machines as well as commodity clusters.

SPARTA can model systems with only a few particles up to millions or billions. See Section 8 for information on
SPARTA performance and scalability, or the Benchmarks section of the SPARTA WWW Site.

SPARTA is a freely-available open-source code, distributed under the terms of the GNU Public License, or
sometimes by request under the terms of the GNU Lesser General Public License (LGPL), which means you can
use or modify the code however you wish. The only restrictions imposed by the GPL or LGPL are on how you
distribute the code further. See Section 1.4 below for a brief discussion of the open-source philosophy.

SPARTA is designed to be easy to modify or extend with new capabilities, such as new collision or chemistry
models, boundary conditions, or diagnostics. See Section 10 for more details.

SPARTA is written in C++ which is used at a hi-level to structure the code and its options in an object-oriented
fashion. The kernel computations use simple data structures and C-like code for effciency. So SPARTA is really
written in an object-oriented C style.

SPARTA was developed with internal funding at Sandia National Laboratories, a US Department of Energy lab.
See Section 1.5 below for more information on SPARTA funding and individuals who have contributed to
SPARTA.

1.2 SPARTA features

This section highlights SPARTA features, with links to specific commands which give more details. The next
section illustrates the kinds of grid geometries and surface definitions which SPARTA supports.

4

https://sparta.github.io
https://sparta.github.io
http://www-unix.mcs.anl.gov/mpi
https://sparta.github.io
http://www.gnu.org/copyleft/gpl.html
http://www.sandia.gov

If SPARTA doesn't have your favorite collision model, boundary condition, or diagnostic, see Section 10 of the
manual, which describes how it can be added to SPARTA.

General features

runs on a single processor or in parallel•
distributed-memory message-passing parallelism (MPI)•
spatial-decomposition of simulation domain for parallelism•
open-source distribution•
highly portable C++•
optional libraries used: MPI•
easy to extend with new features and functionality•
runs from an input script•
syntax for defining and using variables and formulas•
syntax for looping over runs and breaking out of loops•
run one or multiple simulations simultaneously (in parallel) from one script•
build as library, invoke SPARTA thru library interface or provided Python wrapper•
couple with other codes: SPARTA calls other code, other code calls SPARTA, umbrella code calls both•

Models

3d or 2d or 2d-axisymmetric domains•
variety of global boundary conditions•
create particles within flow volume•
emit particles from simulation box faces due to flow properties•
emit particles from simulation box faces due to profile defined in file•
emit particles from surface elements due to normal and flow properties•
ambipolar approximation for ionized plasmas•

Geometry

Cartesian, heirarchical grids with multiple levels of local refinement•
create grid from input script or >read from file•
embed :triangulated (3d) or line-segmented (2d) surfaces in grid, read in from file•

Gas-phase collisions and chemistry

collisions between all particles or pairs of species groups within grid cells•
collision models: VSS (variable soft sphere), VHS (variable hard sphere), HS (hard sphere)•
chemistry models: TCE, QK•

Surface collisions and chemistry

for surface elements or global simulation box boundaries•
collisions: specular or diffuse•
reactions•

Performance

grid cell weighting of particles•
adaptation of the grid cells between runs•
on-the-fly adaptation of the grid cells•

5

static load-balancing of grid cells or particles•
dynamic load-balancing of grid cells or particles•

Diagnostics

global boundary statistics•
per grid cell statistics•
per surface element statistics•
time-averaging of global, grid, surface statistics•

Output

log file of statistical info•
dump files (text or binary) of per particle, per grid cell, per surface element values•
binary restart files•
on-the-fly rendered images and movies of particles, grid cells, surface elements•

Pre- and post-processing

Various pre- and post-processing serial tools are packaged with SPARTA; see Section 9 of the manual.•
Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing
setup, analysis, plotting, and visualization for SPARTA simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

•

1.3 Grids and surfaces in SPARTA

SPARTA overlays a grid over the simulation domain which is used to track particles and to co-locate particles in
the same grid cell for performing collision and chemistry operations. SPARTA uses a Cartesian hierarchical grid.
Cartesian means that the faces of a grid cell are aligned with the Cartesian xyz axes. Hierarchical means that
individual grid cells can be sub-divided into smaller cells, recursively. This allows for flexible grid cell
refinement in any region of the simulation domain. E.g. around a surface, or in a high-density region of the gas
flow.

An example 2d hierarchical grid is shown in the diagram, for a circular surface object (in red) with the grid
refined on the upwind side of the object (flow from left to right).

6

https://lammps.github.io/pizza
http://www.python.org
https://lammps.github.io/pizza

Objects represented with a surface triangulation (line segments in 2d) can also be read in to define objects which
particles flow around. Individual surface elements are assigned to grid cells they intersect with, so that
particle/surface collisions can be efficiently computed.

As an example, here is coarsely triangulated representation of the space shuttle (only 616 triangles!), which could
be embedded in a simulation box. Click on the image for a larger picture.

7

See Sections 4.9 and 4.10 for more details of both the grids and surface objects that SPARTA supports and how to
define them.

1.4 Open source distribution

SPARTA comes with no warranty of any kind. As each source file states in its header, it is a copyrighted code
that is distributed free-of- charge, under the terms of the GNU Public License (GPL). This is often referred to as
open-source distribution - see www.gnu.org or www.opensource.org for more details. The legal text of the GPL is
in the LICENSE file that is included in the SPARTA distribution.

Here is a summary of what the GPL means for SPARTA users:

(1) Anyone is free to use, modify, or extend SPARTA in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of SPARTA, it must remain open-source, meaning you distribute it under
the terms of the GPL. You should clearly annotate such a code as a derivative version of SPARTA.

(3) If you release any code that includes SPARTA source code, then it must also be open-sourced, meaning you
distribute it under the terms of the GPL.

8

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org
http://www.opensource.org

(4) If you give SPARTA files to someone else, the GPL LICENSE file and source file headers (including the
copyright and GPL notices) should remain part of the code.

In the spirit of an open-source code, these are various ways you can contribute to making SPARTA better. You
can send email to the developers on any of these topics.

Point prospective users to the SPARTA WWW Site. Mention it in talks or link to it from your WWW
site.

•

If you find an error or omission in this manual or on the SPARTA WWW Site, or have a suggestion for
something to clarify or include, send an email to the developers.

•

If you find a bug, Section 12.1 describes how to report it.•
If you publish a paper using SPARTA results, send the citation (and any cool pictures or movies) to add
to the Publications, Pictures, and Movies pages of the SPARTA WWW Site, with links and attributions
back to you.

•

The tools sub-directory of the SPARTA distribution has various stand-alone codes for pre- and
post-processing of SPARTA data. More details are given in Section 9. If you write a new tool that others
will find useful, it can be added to the SPARTA distribution.

•

SPARTA is designed to be easy to extend with new code for features like boundary conditions, collision
or chemistry models, diagnostic computations, etc. Section 10 of the manual gives details. If you add a
feature of general interest, it can be added to the SPARTA distribution.

•

The Benchmark page of the SPARTA WWW Site lists SPARTA performance on various platforms. The
files needed to run the benchmarks are part of the SPARTA distribution. If your machine is sufficiently
different from those listed, your timing data can be added to the page.

•

Cash. Small denominations, unmarked bills preferred. Paper sack OK. Leave on desk. VISA also
accepted. Chocolate chip cookies encouraged.

•

1.5 Acknowledgments and citations

SPARTA development has been funded by the US Department of Energy (DOE).

If you use SPARTA results in your published work, please cite the paper(s) listed under the Citing SPARTA link
of the SPARTA WWW page, and include a pointer to the SPARTA WWW Site (https://sparta.github.io):

The Publications link on the SPARTA WWW page lists papers that have cited SPARTA. If your paper is not
listed there, feel free to send us the info. If the simulations in your paper produced cool pictures or animations,
we'll be pleased to add them to the Pictures or Movies pages of the SPARTA WWW site.

The core group of SPARTA developers is at Sandia National Labs:

Steve Plimpton, sjplimp at gmail.com•
Michael Gallis, magalli at sandia.gov•

9

https://sparta.github.io/authors.html
https://sparta.github.io
https://sparta.github.io
https://sparta.github.io/authors.html
https://sparta.github.io
https://sparta.github.io
http://www.doe.gov
https://sparta.github.io/cite.html
https://sparta.github.io
https://sparta.github.io/papers.html
https://sparta.github.io/pictures.html
https://sparta.github.io/movies.html

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

2. Getting Started

This section describes how to build and run SPARTA, for both new and experienced users.

2.1 What's in the SPARTA distribution
2.2 Making SPARTA
2.3 Making SPARTA with optional packages
2.4 Building SPARTA as a library
2.5 Testing SPARTA
2.6 Running SPARTA
2.7 Command-line options
2.8 Screen output

2.1 What's in the SPARTA distribution

When you download SPARTA you will need to unzip and untar the downloaded file with the following
commands:

gunzip sparta*.tar.gz
tar xvf sparta*.tar

This will create a SPARTA directory containing two files and several sub-directories:

README text file
LICENSE the GNU General Public License (GPL)
bench benchmark problems
data files with species, collision, and reaction parameters
doc documentation
examples simple test problems
python Python wrapper
src source files
tools pre- and post-processing tools

2.2 Making SPARTA

This section has the following sub-sections:

Read this first•
Steps to build a SPARTA executable using make•
Steps to build a SPARTA executable using CMake•
Common errors that can occur when making SPARTA•
Additional build tips using make•
Additional build tips using CMake•
Building for a Mac•
Building for Windows•

Read this first:

10

https://sparta.github.io

Building SPARTA can be non-trivial. You may need to edit a makefile, there are compiler options to consider,
additional libraries can be used (MPI, JPEG).

Please read this section carefully. If you are not comfortable with cmake, makefiles, or building codes on a Linux
platform, or running an MPI job on your machine, please find a local expert to help you.

SPARTA requires that the compiler supports C++11. SPARTA will throw an error if this is not the case. If you
are building SPARTA with Kokkos, the compiler must support C++17.

If you have a build problem that you are convinced is a SPARTA issue (e.g. the compiler complains about a line
of SPARTA source code), then please send an email to the developers.

If you succeed in building SPARTA on a new kind of machine, for which there isn't a similar Makefile in the
src/MAKE directory or .cmake file in cmake/presets, send it to the developers and we'll include it in future
SPARTA releases.

Steps to build a SPARTA executable using make:

Step 0

The src directory contains the C++ source and header files for SPARTA. It also contains a top-level Makefile and
a MAKE sub-directory with low-level Makefile.* files for many machines. From within the src directory, type
"make" or "gmake". You should see a list of available choices. If one of those is the machine and options you
want, you can type a command like:

make g++
or
gmake mac

Note that on a multi-core platform you can launch a parallel make, by using the "-j" switch with the make
command, which will build SPARTA more quickly.

If you get no errors and an executable like spa_g++ or spa_mac is produced, you're done; it's your lucky day.

Note that by default none of the SPARTA optional packages are installed. To build SPARTA with optional
packages, see this section below.

Step 1

If Step 0 did not work, you will need to create a low-level Makefile for your machine, like Makefile.foo. Copy an
existing src/MAKE/Makefile.* as a starting point. The only portions of the file you need to edit are the first line,
the "compiler/linker settings" section, and the "SPARTA-specific settings" section.

Step 2

Change the first line of src/MAKE/Makefile.foo to list the word "foo" after the "#", and whatever other options it
will set. This is the line you will see if you just type "make".

Step 3

The "compiler/linker settings" section lists compiler and linker settings for your C++ compiler, including
optimization flags. You can use g++, the open-source GNU compiler, which is available on all Linux systems.
You can also use mpicc which will typically be available if MPI is installed on your system, though you should

11

https://sparta.github.io/authors.html
https://sparta.github.io/authors.html

check which actual compiler it wraps. Vendor compilers often produce faster code. On boxes with Intel CPUs, we
suggest using the commercial Intel icc compiler, which can be downloaded from Intel's compiler site.

If building a C++ code on your machine requires additional libraries, then you should list them as part of the LIB
variable.

The DEPFLAGS setting is what triggers the C++ compiler to create a dependency list for a source file. This
speeds re-compilation when source (*.cpp) or header (*.h) files are edited. Some compilers do not support
dependency file creation, or may use a different switch than -D. GNU g++ works with -D. Note that when you
build SPARTA for the first time on a new platform, a long list of *.d files will be printed out rapidly. This is not
an error; it is the Makefile doing its normal creation of dependencies.

Step 4

The "system-specific settings" section has several parts. Note that if you change any -D setting in this section, you
should do a full re-compile, after typing "make clean", which will describe different clean options.

The SPA_INC variable is used to include options that turn on ifdefs within the SPARTA code. The options that
are currently recognized are:

-DSPARTA_GZIP•
-DSPARTA_JPEG•
-DSPARTA_PNG•
-DSPARTA_FFMPEG•
-DSPARTA_MAP•
-DSPARTA_UNORDERED_MAP•
-DSPARTA_SMALL•
-DSPARTA_BIG•
-DSPARTA_BIGBIG•
-DSPARTA_LONGLONG_TO_LONG•

The read_data and dump commands will read/write gzipped files if you compile with -DSPARTA_GZIP. It
requires that your Linux support the "popen" command.

If you use -DSPARTA_JPEG and/or -DSPARTA_PNG, the dump image command will be able to write out JPEG
and/or PNG image files respectively. If not, it will only be able to write out PPM image files. For JPEG files, you
must also link SPARTA with a JPEG library, as described below. For PNG files, you must also link SPARTA
with a PNG library, as described below.

If you use -DSPARTA_FFMPEG, the dump movie command will be available to support on-the-fly generation of
rendered movies the need to store intermediate image files. It requires that your machines supports the "popen"
function in the standard runtime library and that an FFmpeg executable can be found by SPARTA during the run.

If you use -DSPARTA_MAP, SPARTA will use the STL map class for hash tables. This is less efficient than the
unordered map class which is not yet supported by all C++ compilers. If you use
-DSPARTA_UNORDERED_MAP, SPARTA will use the unordered_map class for hash tables and will assume it
is part of the STL (e.g. this works for Clang++). The default is to use the unordered map class from the "tri1"
extension to the STL which is supported by most compilers. So only use either of these options if the build
complains that unordered maps are not recognized.

Use at most one of the -DSPARTA_SMALL, -DSPARTA_BIG, -DSPARTA_BIGBIG settings. The default is
-DSPARTA_BIG. These refer to use of 4-byte (small) vs 8-byte (big) integers within SPARTA, as described in

12

http://www.intel.com/software/products/noncom

src/spatype.h. The only reason to use the BIGBIG setting is if you have a regular grid with more than ~2 billion
grid cells or a hierarchical grid with enough levels that grid cell IDs cannot fit in a 32-bit integer. In either case,
SPARTA will generate an error message for "Cell ID has too many bits". See Section 4.8 of the manual for details
on how cell IDs are formatted. The only reason to use the SMALL setting is if your machine does not support
64-bit integers.

In all cases, the size of problem that can be run on a per-processor basis is limited by 4-byte integer storage to
about 2 billion particles per processor (2^31), which should not normally be a restriction since such a problem
would have a huge per-processor memory and would run very slowly in terms of CPU secs/timestep.

The -DSPARTA_LONGLONG_TO_LONG setting may be needed if your system or MPI version does not
recognize "long long" data types. In this case a "long" data type is likely already 64-bits, in which case this setting
will use that data type.

Using one of the -DFFT_PACK_ARRAY, -DFFT_PACK_POINTER, and -DFFT_PACK_MEMCPY options can
make for faster parallel FFTs on some platforms. The -DFFT_PACK_ARRAY setting is the default. See the
compute fft/grid command for info about FFTs. See Step 6 below for info about building SPARTA with an FFT
library.

Step 5

The 3 MPI variables are used to specify an MPI library to build SPARTA with.

If you want SPARTA to run in parallel, you must have an MPI library installed on your platform. If you use an
MPI-wrapped compiler, such as "mpicc" to build, you should be able to leave these 3 variables blank; the MPI
wrapper knows where to find the needed files. If not, and MPI is installed on your system in the usual place
(under /usr/local), you also may not need to specify these 3 variables. On some large parallel machines which use
"modules" for their compile/link environements, you may simply need to include the correct module in your build
environment. Or the parallel machine may have a vendor-provided MPI which the compiler has no trouble
finding.

Failing this, with these 3 variables you can specify where the mpi.h file is found (via MPI_INC), and the MPI
library file is found (via MPI_PATH), and the name of the library file (via MPI_LIB). See Makefile.serial for an
example of how this can be done.

If you are installing MPI yourself, we recommend MPICH 1.2 or 2.0 or OpenMPI. MPICH can be downloaded
from the Argonne MPI site. OpenMPI can be downloaded from the OpenMPI site. If you are running on a big
parallel platform, your system admins or the vendor should have already installed a version of MPI, which will be
faster than MPICH or OpenMPI, so find out how to build and link with it. If you use MPICH or OpenMPI, you
will have to configure and build it for your platform. The MPI configure script should have compiler options to
enable you to use the same compiler you use for the SPARTA build, which can avoid problems that can arise
when linking SPARTA to the MPI library.

If you just want to run SPARTA on a single processor, you can use the dummy MPI library provided in
src/STUBS, since you don't need a true MPI library installed on your system. You will also need to build the
STUBS library for your platform before making SPARTA itself. From the src directory, type "make mpi-stubs",
or from within the STUBS dir, type "make" and it should create a libmpi.a suitable for linking to SPARTA. If this
build fails, you will need to edit the STUBS/Makefile for your platform.

The file STUBS/mpi.cpp provides a CPU timer function called MPI_Wtime() that calls gettimeofday() . If your
system doesn't support gettimeofday() , you'll need to insert code to call another timer. Note that the
ANSI-standard function clock() function rolls over after an hour or so, and is therefore insufficient for timing long

13

https://www.mpich.org
http://www.open-mpi.org

SPARTA simulations.

Step 6

The 3 FFT variables allow you to specify an FFT library which SPARTA uses (for performing 1d FFTs) when
built with its FFT package, which contains commands that invoke FFTs.

SPARTA supports various open-source or vendor-supplied FFT libraries for this purpose. If you leave these 3
variables blank, SPARTA will use the open-source KISS FFT library, which is included in the SPARTA
distribution. This library is portable to all platforms and for typical SPARTA simulations is almost as fast as
FFTW or vendor optimized libraries. If you are not including the FFT package in your build, you can also leave
the 3 variables blank.

Otherwise, select which kinds of FFTs to use as part of the FFT_INC setting by a switch of the form
-DFFT_XXX. Available values for XXX are: MKL or FFTW3. Selecting -DFFT_FFTW will use the FFTW3
library.

Similarly a separate FFT library can be specified for KOKKOS package. By default, SPARTA will use a Kokkos
version of the open-source KISS FFT library, which is included in the SPARTA distribution. Note that using the
KISS FFT library on GPUs may give suboptimal performance. Other options can be specified using the form
-DFFT_KOKKOS_XXX. Available values for XXX when using Kokkos are: CUFFT, HIPFFT, MKL_GPU,
MKL or FFTW3. When using the Kokkos CUDA backend, either CUFFT or KISS must be used. When using the
Kokkos HIP backend, either HIPFFT or KISS must be used. When using the Kokkos SYCL backend, either
MKL_GPU or KISS must be used. When using the Kokkos OpenMP or Serial backend, either MKL, FFTW3, or
KISS must be used.

The CUFFT option specifies the cuFFT library from NVIDIA. The HIPFFT option specifies the rocFFT library
from AMD. The HIPFFT option specifies the rocFFT library from AMD. The MKL_GPU option supports GPU
offload of FFTs on Intel GPUs with oneMKL using the Kokkos SYCL backend.

You may also need to set the FFT_INC, FFT_PATH, and FFT_LIB variables, so the compiler and linker can find
the needed FFT header and library files. Note that on some large parallel machines which use "modules" for their
compile/link environements, you may simply need to include the correct module in your build environment. Or
the parallel machine may have a vendor-provided FFT library which the compiler has no trouble finding.

FFTW is a fast, portable library that should also work on any platform. You can download it from www.fftw.org.
The 3.X versions are supported as -DFFT_FFTW3. Building FFTW for your box should be as simple as
./configure; make.

The FFT_INC variable also allows for a -DFFT_SINGLE setting that will use single-precision FFTs, which can
speed-up the calculation, particularly in parallel or on GPUs. Fourier transform operations are somewhat
insensitive to floating point truncation errors and thus do not always need to be performed in double precision.
Using the -DFFT_SINGLE setting trades off a little accuracy for reduced memory use and parallel
communication costs for transposing 3d FFT data.

Step 7

The 3 JPG variables allow you to specify a JPEG and/or PNG library which SPARTA uses when writing out
JPEG or PNG files via the dump image command. These can be left blank if you do not use the
-DSPARTA_JPEG or -DSPARTA_PNG switches discussed above in Step 4, since in that case JPEG/PNG output
will be disabled.

14

http://kissfft.sf.net
http://kissfft.sf.net
https://developer.nvidia.com/cufft
https://rocm.docs.amd.com/projects/rocFFT/en/latest/
https://rocm.docs.amd.com/projects/rocFFT/en/latest/
http://www.fftw.org

A standard JPEG library usually goes by the name libjpeg.a or libjpeg.so and has an associated header file
jpeglib.h. Whichever JPEG library you have on your platform, you'll need to set the appropriate JPG_INC,
JPG_PATH, and JPG_LIB variables, so that the compiler and linker can find it.

A standard PNG library usually goes by the name libpng.a or libpng.so and has an associated header file png.h.
Whichever PNG library you have on your platform, you'll need to set the appropriate JPG_INC, JPG_PATH, and
JPG_LIB variables, so that the compiler and linker can find it.

As before, if these header and library files are in the usual place on your machine, you may not need to set these
variables.

Step 8

Note that by default none of the SPARTA optional packages are installed. To build SPARTA with optional
packages, see this section below, before proceeding to Step 9.

Step 9

That's it. Once you have a correct Makefile.foo, and you have pre-built any other needed libraries (e.g. MPI), all
you need to do from the src directory is type one of the following:

make foo
make -j N foo
gmake foo
gmake -j N foo

The -j or -j N switches perform a parallel build which can be much faster, depending on how many cores your
compilation machine has. N is the number of cores the build runs on.

You should get the executable spa_foo when the build is complete.

Steps to build a SPARTA executable using CMake:

Step 0

Please review https://github.com/sparta/sparta/blob/master/BUILD_CMAKE.md and ensure that CMake version
3.12.0 or greater is installed:

which cmake
which cmake3
cmake --version

On clusters and supercomputers one can use modules to load cmake:

module avail cmake
module load

On Linux one may use apt, yum, or pacman to install cmake.

On Mac one may use brew or macports to install cmake.

Step 1

15

The cmake directory contains the CMake source files for SPARTA. Create a build directory and from within the
build directory, run cmake:

mkdir build
cd build
cmake -LH -DSPARTA_MACHINE=tutorial /path/to/sparta/cmake

This will generate the default Makefiles and print the SPARTA CMake options. To list the generated targets, do:

make help

Now you can try to build the SPARTA binaries with:

make

If everything works, an executable named spa_tutorial and a library named libsparta.a will be produced in
build/src.

Step 2

If Step 1 did not work, see if you can use any system presets from /path/to/sparta/cmake/presets. To select a
preset:

cd build

Clear the CMake files rm -rf CMake*

cmake -C /path/to/sparta/cmake/presets/NAME.cmake -DSPARTA_MACHINE=tutorial /path/to/sparta/cmake
make

Step 3

If Step 2 did not work, look at cmake -LH for a list of SPARTA CMake options and their meaning, then modify
one or more of those options by doing:

cd build
rm -rf CMake*
cmake -C /path/to/sparta/cmake/presets/NAME.cmake -D

where and correspond to valid option value pairs listed by cmake -LH. For the
SPARTA_DEFAULT_CXX_COMPILE_FLAGS option, see Step 4.

For a full list of CMake option value pairs, see cmake -LAH. The most relevant CMake options (with example
values) for our purposes here are:

-DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_COMPILER=/usr/local/bin/g++
-DCMAKE_CXX_FLAGS=-O3

If your cmake command line is getting too long, consider placing it in a bash script and escaping newlines. For
example:

cmake -C /path/to/sparta/cmake/presets/NAME.cmake -D -D

Step 4

16

The SPARTA_DEFAULT_CXX_COMPILE_FLAGS option passes flags to the compiler when building object
files. Note that if you change any -D setting in this section, you should do a full re-compile, after typing "make
clean".

The SPARTA_DEFAULT_CXX_COMPILE_FLAGS option is typically used to include options that turn on
ifdefs within the SPARTA code. The options that are currently recogized are:

-DSPARTA_GZIP•
-DSPARTA_JPEG•
-DSPARTA_PNG•
-DSPARTA_FFMPEG•
-DSPARTA_MAP•
-DSPARTA_UNORDERED_MAP•
-DSPARTA_SMALL•
-DSPARTA_BIG•
-DSPARTA_BIGBIG•
-DSPARTA_LONGLONG_TO_LONG•

The read_data and dump commands will read/write gzipped files if you compile with -DSPARTA_GZIP. It
requires that your Linux support the "popen" command.

If you use -DSPARTA_JPEG and/or -DSPARTA_PNG, the dump image command will be able to write out JPEG
and/or PNG image files respectively. If not, it will only be able to write out PPM image files. For JPEG files, you
must also link SPARTA with a JPEG library, as described below. For PNG files, you must also link SPARTA
with a PNG library, as described below.

If you use -DSPARTA_FFMPEG, the dump movie command will be available to support on-the-fly generation of
rendered movies the need to store intermediate image files. It requires that your machines supports the "popen"
function in the standard runtime library and that an FFmpeg executable can be found by SPARTA during the run.

If you use -DSPARTA_MAP, SPARTA will use the STL map class for hash tables. This is less efficient than the
unordered map class which is not yet supported by all C++ compilers. If you use
-DSPARTA_UNORDERED_MAP, SPARTA will use the unordered_map class for hash tables and will assume it
is part of the STL (e.g. this works for Clang++). The default is to use the unordered map class from the "tri1"
extension to the STL which is supported by most compilers. So only use either of these options if the build
complains that unordered maps are not recognized.

Use at most one of the -DSPARTA_SMALL, -DSPARTA_BIG, -DSPARTA_BIGBIG settings. The default is
-DSPARTA_BIG. These refer to use of 4-byte (small) vs 8-byte (big) integers within SPARTA, as described in
src/spatype.h. The only reason to use the BIGBIG setting is if you have a regular grid with more than ~2 billion
grid cells or a hierarchical grid with enough levels that grid cell IDs cannot fit in a 32-bit integer. In either case,
SPARTA will generate an error message for "Cell ID has too many bits". See Section 4.8 of the manual for details
on how cell IDs are formatted. The only reason to use the SMALL setting is if your machine does not support
64-bit integers.

In all cases, the size of problem that can be run on a per-processor basis is limited by 4-byte integer storage to
about 2 billion particles per processor (2^31), which should not normally be a restriction since such a problem
would have a huge per-processor memory and would run very slowly in terms of CPU secs/timestep.

The -DSPARTA_LONGLONG_TO_LONG setting may be needed if your system or MPI version does not
recognize "long long" data types. In this case a "long" data type is likely already 64-bits, in which case this setting
will use that data type.

17

Using one of the -DPACK_ARRAY, -DPACK_POINTER, and -DPACK_MEMCPY options can make for faster
parallel FFTs on some platforms. The -DPACK_ARRAY setting is the default. See the compute fft/grid command
for info about FFTs. See STEP 7 below for info about building SPARTA with an FFT library.

Step 5

This step is optional. Once you get Steps 3 and 4 working by modifying the options to the cmake command, try
setting the same options in /path/to/sparta/cmake/presets/NEW.cmake by copying
/path/to/sparta/cmake/presets/NAME.cmake and modifying the cmake source code. Note that the CMake cache is
sticky and will only evict a cached option value pair if you use -D or the FORCE argument to CMake's set
routine.

Now just do:

cd build
rm -rf CMake*
cmake -C /path/to/sparta/cmake/presets/NEW.cmake /path/to/sparta/cmake
make

consider sharing and vetting NEW.cmake by opening a pull request at https://github.com/sparta/sparta/.

Step 6

This step explains how to enable and select MPI in the SPARTA CMake configuration. There may already be a
preset in /path/to/sparta/cmake/presets that selects the correct MPI installation.

By default, SPARTA configures with MPI enabled and cmake will print which MPI was selected. To build serial
binaries, use SPARTA's MPI_STUBS package:

cmake -DPKG_MPI_STUBS=ON /path/to/sparta/cmake

You may want a different MPI installation than CMake finds. CMake uses module files such as FindMPI.cmake
to handle wiring in a given installation of a library and its headers. If you're on a cluster or supercomputer, use
module before running cmake so that cmake finds the MPI installation you'd like to use:

Show which modules are loaded module list

Show which modules are available module avail

module load

On Linux one may use apt, yum, or pacman to install MPI.

On Mac one may use brew or macports to install MPI.

Verify that cmake found the correct MPI installation:

cd build rm -rf CMake*

cmake should print "Found MPI*" strings
cmake options /path/to/sparta/cmake

Note that if the preset file you're using enables PKG_MPI_STUBS, MPI will not be searched for unless you
explicitly disable PKG_MPI_STUBS in the preset file.

18

If you'd like to use a custom MPI installation or cmake is not locating the MPI installation you've selected via the
module command or package manager, try export MPI_ROOT=/path/to/mpi/install before running cmake.
Otherwise, please see https://cmake.org/cmake/help/v3.12/module/FindMPI.html#variables-for-locating-mpi.
Note that this documentation link is for CMake version 3.12.

Step 7

When the SPARTA FFT package is enabled with cmake -DPKG_FFT=ON, you may select between 3 thiry party
libraries (TPLs) for 1d FFTs, which SPARTA uses when configured with cmake -DFFT=FFTW3,MKL,KISS.

By default SPARTA will use the open-source KISS FFT library, which is included in the SPARTA distribution.
This library is portable to all platforms and for typical SPARTA simulations is almost as fast as FFTW or vendor
optimized libraries.

Similarly when using the KOKKOS package, you may select between 5 TPLs for FFT which SPARTA uses when
configured with cmake -DFFT_KOKKOS=CUFFT,HIPFFT,FFTW3,MKL,KISS. This requires enabling the
SPARTA FFT package which can be selected with cmake -DPKG_FFT=ON.

By default, SPARTA will use a Kokkos version of the open-source KISS FFT library, which is included in the
SPARTA distribution. Note that using the KISS FFT library on GPUs may give suboptimal performance. Other
options for -DFFT_KOKKOS are CUFFT, HIPFFT, MKL or FFTW3. When using the Kokkos CUDA backend,
either CUFFT or KISS must be used. When using the Kokkos HIP backend, either HIPFFT or KISS must be used.
When using the Kokkos OpenMP or Serial backend, either MKL, FFTW3, or KISS must be used. The CUFFT
option specifies the cuFFT library from NVIDIA. The HIPFFT option specifies the rocFFT library from AMD.

You may need to install the FFT TPL you're interested in using. If you're on a cluster or supercomputer, use
module before running cmake so that cmake finds the FFT installation you'd like to use:

Show which modules are loaded module list

Show which modules are available module avail

module load

On Linux one may use apt, yum, or pacman to install FFT.

On Mac one may use brew or macports to install FFT.

Verify that cmake found the correct MPI installation:

cd build rm -rf CMake*

cmake should print "Found FFT*" strings
cmake options /path/to/sparta/cmake

Note that if the preset file you're using enables PKG_FFT, FFT will not be searched for unless you explicitly
disable PKG_FFT in the preset file.

If you'd like to use a custom FFT installation or cmake is not locating the FFT installation you've selected via the
module command or package manager, try export FFT_ROOT=/path/to/fft/install before running cmake.
Otherwise, please open an issue at https://github.com/sparta/sparta/issues.

Step 8

19

http://kissfft.sf.net
http://kissfft.sf.net
https://developer.nvidia.com/cufft
https://rocm.docs.amd.com/projects/rocFFT/en/latest/

You may select between 2 TPLs, JPEG or PNG, for writing out JPEG or PNG files via the dump image
command. To select a TPL, use:

cmake -DBUILD_JPEG=ON /path/to/sparta/cmake

or:

cmake -DBUILD_PNG=ON /path/to/sparta/cmake

If you'd like to use a custom jpeg or png installation, please see
https://cmake.org/cmake/help/v3.12/module/FindJPEG.html or
https://cmake.org/cmake/help/v3.12/module/FindPNG.html. Note that these documentation links are for CMake
version 3.12.

Step 9

By default, none of the SPARTA optional packages are installed. To build SPARTA with optional packages, use:

cmake -DPKG_XXX=ON /path/to/sparta/cmake

Where XXX is the package to enable. For a full list of optional packages, see:

cmake -LH /path/to/sparta/cmake

Step 10

Once you have a correct cmake command line or the NAME.cmake preset file, just do:

cd build
cmake OPTIONS /path/to/sparta/cmake

or:

cd build cmake -C /path/to/sparta/cmake/presets/NAME.cmake -DSPARTA_MACHINE=tutorial
/path/to/sparta/cmake

make -j N

The -j or -j N switches perform a parallel build which can be much faster, depending on how many cores your
compilation machine has. N is the number of cores the build runs on.

You should get build/src/spa_tutorial and build/src/libsparta.a.

Errors that can occur when making SPARTA:

IMPORTANT NOTE: If an error occurs when building SPARTA, the compiler or linker will state very explicitly
what the problem is. The error message should give you a hint as to which of the steps above has failed, and what
you need to do in order to fix it. Building a code with a Makefile is a very logical process. The compiler and
linker need to find the appropriate files and those files need to be compatible with SPARTA source files. When a
make fails, there is usually a very simple reason, which you or a local expert will need to fix.

Here are two non-obvious errors that can occur:

20

(1) If the make command breaks immediately with errors that indicate it can't find files with a "*" in their names,
this can be because your machine's native make doesn't support wildcard expansion in a makefile. Try gmake
instead of make. If that doesn't work, try using a -f switch with your make command to use a pre-generated
Makefile.list which explicitly lists all the needed files, e.g.

make makelist
make -f Makefile.list g++
gmake -f Makefile.list mac

The first "make" command will create a current Makefile.list with all the file names in your src dir. The 2nd
"make" command (make or gmake) will use it to build SPARTA.

(2) If you get an error that says something like 'identifier "atoll" is undefined', then your machine does not support
"long long" integers. Try using the -DSPARTA_LONGLONG_TO_LONG setting described above in Step 4.

Additional build tips using make:

(1) Building SPARTA for multiple platforms.

You can make SPARTA for multiple platforms from the same src directory. Each target creates its own object
sub-directory called Obj_name where it stores the system-specific *.o files.

(2) Cleaning up.

Typing "make clean-all" or "make clean-foo" will delete *.o object files created when SPARTA is built, for either
all builds or for a particular machine.

Additional build tips using CMake:

(1) Building SPARTA for multiple platforms.

It's best to build SPARTA for multiple platforms from different build directories. However, each target creates its
own spa_TARGET binary and multiple targets can be built from the same build directory. Note that the *.o object
files in build/src will reflective of the most recent build configuration. Also note that if BUILD_SHARED_LIBS
was enabled, libsparta will be reflective of the most recent build configuration.

(2) Cleaning up.

Typing "make clean" will delete all binary files for the most recent build configuration.

Building for a Mac:

OS X is BSD Unix, so it should just work. See the Makefile.mac or cmake/presets/mac.cmake file.

Building for Windows:

At some point we may provide a pre-built Windows executable for SPARTA. Until then you will need to build an
executable from source files.

One way to do this is install and use cygwin to build SPARTA with a standard Linux make or CMake, just as you
would on any Linux box.

21

You can also import the *.cpp and *.h files into Microsoft Visual Studio. If someone does this and wants to
provide project files or other Windows build tips, please send them to the developers and we will include them in
the distribution.

2.3 Making SPARTA with optional packages

This section has the following sub-sections:

Package basics Including/excluding packages with make Including/excluding packages with CMake

Package basics:

The source code for SPARTA is structured as a set of core files which are always included, plus optional
packages. Packages are groups of files that enable a specific set of features. For example, the FFT package which
includes a compute fft/grid command and a 2d and 3d FFT library.

For make: You can see the list of all packages by typing "make package" from within the src directory of the
SPARTA distribution. This also lists various make commands that can be used to manipulate packages.

For CMake: You can see the list of all packages by typing "cmake -DSPARTA_LIST_PKGS=ON" from within
the build directory.

If you use a command in a SPARTA input script that is part of a package, you must have built SPARTA with that
package, else you will get an error that the style is invalid or the command is unknown. Every command's doc
page specfies if it is part of a package.

Including/excluding packages with make:

To use (or not use) a package you must include it (or exclude it) before building SPARTA. From the src directory,
this is typically as simple as:

make yes-fft
make g++

or

make no-fft
make g++

NOTE: You should NOT include/exclude packages and build SPARTA in a single make command using multiple
targets, e.g. make yes-fft g++. This is because the make procedure creates a list of source files that will be
out-of-date for the build if the package configuration changes within the same command.

Some packages have individual files that depend on other packages being included. SPARTA checks for this and
does the right thing. I.e. individual files are only included if their dependencies are already included. Likewise, if
a package is excluded, other files dependent on that package are also excluded.

If you will never run simulations that use the features in a particular packages, there is no reason to include it in
your build.

When you download a SPARTA tarball, no packages are pre-installed in the src directory.

22

https://sparta.github.io/authors.html

Packages are included or excluded by typing "make yes-name" or "make no-name", where "name" is the name of
the package in lower-case, e.g. name = fft for the FFT package. You can also type "make yes-all", or "make
no-all" to include/exclude all packages. Type "make package" to see all of the package-related make options.

NOTE: Inclusion/exclusion of a package works by simply moving files back and forth between the main src
directory and sub-directories with the package name (e.g. src/FFT or src/KOKKOS), so that the files are seen or
not seen when SPARTA is built. After you have included or excluded a package, you must re-build SPARTA.

Additional package-related make options exist to help manage SPARTA files that exist in both the src directory
and in package sub-directories. You do not normally need to use these commands unless you are editing SPARTA
files.

Typing "make package-update" or "make pu" will overwrite src files with files from the package sub-directories if
the package has been included. It should be used after a patch is installed, since patches only update the files in
the package sub-directory, but not the src files. Typing "make package-overwrite" will overwrite files in the
package sub-directories with src files.

Typing "make package-status" or "make ps" will show which packages are currently included. For those that are
included, it will list any files that are different in the src directory and package sub-directory. Typing "make
package-diff" lists all differences between these files. Again, type "make package" to see all of the
package-related make options.

Typing "make package-installed" or "make pi" will show which packages are currently installed in the src
directory.

Including/excluding packages with CMake:

To use (or not use) a package you must include it (or exclude it) before building SPARTA. From the build
directory, do:

cmake -DPKG_FFT=ON /path/to/sparta/cmake
make -j

or

cmake -DPKG_FFT=OFF /path/to/sparta/cmake
make -j

Some packages have individual files that depend on other packages being included. SPARTA checks for this and
does the right thing. I.e. individual files are only included if their dependencies are already included. Likewise, if
a package is excluded, other files dependent on that package are also excluded.

If you will never run simulations that use the features in a particular packages, there is no reason to include it in
your build.

When you download a SPARTA tarball, no packages are pre-installed in the build/src directory.

Packages are included or excluded by typing "cmake -DPKG_NAME=ON" or "cmake -DPKG_NAME=OFF",
where "NAME" is the name of the package in upper-case, e.g. name = FFT for the FFT package. You can also
type "cmake -DSPARTA_ENABLE_ALL_PKGS=ON", or "cmake -DSPARTA_DISABLE_ALL_PKGS=ON"
to include or exclude all packages. Type "cmake -DSPARTA_LIST_PKGS=ON" to see all of the package-related
CMake options.

23

NOTE: Inclusion or exclusion of a package works by setting CMake boolean variables to generate the correct
Makefile targets and dependencies. After you have included or excluded a package, you must re-build SPARTA.

If a SPARTA package has source code changes, simply run "make" to rebuild SPARTA with these changes.

Typing "cmake" from the build directory will show which packages are currently included.

2.4 Building SPARTA as a library

SPARTA can be built as either a static or shared library, which can then be called from another application or a
scripting language. See Section 6.7 for more info on coupling SPARTA to other codes. See Section 11 for more
info on wrapping and running SPARTA from Python.

The CMake build system will produce the library static of dynamic libsparta library in build/src.

Static library:

CMake builds sparta as a static library in libsparta.a, by default.

To build SPARTA as a static library (*.a file on Linux), type

make foo mode=lib

where foo is the machine name. This kind of library is typically used to statically link a driver application to
SPARTA, so that you can insure all dependencies are satisfied at compile time. This will use the ARCHIVE and
ARFLAGS settings in src/MAKE/Makefile.foo. The build will create the file libsparta_foo.a which another
application can link to. It will also create a soft link libsparta.a, which will point to the most recently built static
library.

Shared library:

To build SPARTA as a shared library (*.so file on Linux), which can be dynamically loaded, e.g. from Python,
type

make foo mode=shlib

or:

cmake -C /path/to/sparta/cmake/presets/foo.cmake -DBUILD_SHARED_LIBS=ON /path/to/sparta/cmake
make

where foo is the machine name. This kind of library is required when wrapping SPARTA with Python; see
Section_python for details. This will use the SHFLAGS and SHLIBFLAGS settings in src/MAKE/Makefile.foo
and perform the build in the directory Obj_shared_foo. This is so that each file can be compiled with the -fPIC
flag which is required for inclusion in a shared library. The build will create the file libsparta_foo.so which
another application can link to dyamically. It will also create a soft link libsparta.so, which will point to the most
recently built shared library. This is the file the Python wrapper loads by default.

Note that for a shared library to be usable by a calling program, all the auxiliary libraries it depends on must also
exist as shared libraries. This will be the case for libraries included with SPARTA, such as the dummy MPI
library in src/STUBS or any package libraries in lib/packages, since they are always built as shared libraries using
the -fPIC switch. However, if a library like MPI or FFTW does not exist as a shared library, the shared library
build will generate an error. This means you will need to install a shared library version of the auxiliary library.

24

The build instructions for the library should tell you how to do this.

Here is an example of such errors when the system FFTW or provided lib/colvars library have not been built as
shared libraries:

/usr/bin/ld: /usr/local/lib/libfftw3.a(mapflags.o): relocation
R_X86_64_32 against `.rodata' can not be used when making a shared
object; recompile with -fPIC
/usr/local/lib/libfftw3.a: could not read symbols: Bad value

/usr/bin/ld: ../../lib/colvars/libcolvars.a(colvarmodule.o):
relocation R_X86_64_32 against `__pthread_key_create' can not be used
when making a shared object; recompile with -fPIC
../../lib/colvars/libcolvars.a: error adding symbols: Bad value

As an example, here is how to build and install the MPICH library, a popular open-source version of MPI,
distributed by Argonne National Labs, as a shared library in the default /usr/local/lib location:

./configure --enable-shared
make
make install

You may need to use "sudo make install" in place of the last line if you do not have write privileges for
/usr/local/lib. The end result should be the file /usr/local/lib/libmpich.so.

Additional requirement for using a shared library:

The operating system finds shared libraries to load at run-time using the environment variable
LD_LIBRARY_PATH.

Using CMake, ensure that CMAKE_INSTALL_PREFIX is set properly and then run "make -j install" or add
build/src to LD_LIBRARY_PATH in your shell's environment.

Using make, you may wish to copy the file src/libsparta.so or src/libsparta_g++.so (for example) to a place the
system can find it by default, such as /usr/local/lib, or you may wish to add the SPARTA src directory to
LD_LIBRARY_PATH, so that the current version of the shared library is always available to programs that use it.

For the csh or tcsh shells, you would add something like this to your ~/.cshrc file:

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:/home/sjplimp/sparta/src

Calling the SPARTA library:

Either flavor of library (static or shared) allows one or more SPARTA objects to be instantiated from the calling
program.

When used from a C++ program, all of SPARTA is wrapped in a SPARTA_NS namespace; you can safely use
any of its classes and methods from within the calling code, as needed.

When used from a C or Fortran program or a scripting language like Python, the library has a simple
function-style interface, provided in src/library.cpp and src/library.h.

See Section_howto 4.7 of the manual for ideas on how to couple SPARTA to other codes via its library interface.
See Section_python of the manual for a description of the Python wrapper provided with SPARTA that operates
through the SPARTA library interface.

25

http://www-unix.mcs.anl.gov/mpi

The files src/library.cpp and library.h define the C-style API for using SPARTA as a library. See Section_howto
4.6 of the manual for a description of the interface and how to extend it for your needs.

2.5 Testing SPARTA

SPARTA can be tested by using the CMake build system.

Basic Testing

To enable basic testing, use the SPARTA_ENABLE_TESTING option when configuring sparta:

cmake -C /path/to/sparta/cmake/presets/NAME.cmake -DSPARTA_MACHINE=basic-test-tutorial
-DSPARTA_ENABLE_TESTING=ON /path/to/sparta/cmake

Setting SPARTA_ENABLE_TESTING to ON, adds tests in /path/to/sparta/examples/**/in.* to be run via ctest.
Each in.* file corresponds to an individual test. If BUILD_MPI is ON, tests will be configured to run with both 1
and 4 mpi ranks. If the binaries are built, tests can be run via ctest:

make ctest

This will run all the tests in serial. To run the tests in parallel, use -j:

ctest -j4

This will run up to four single rank, single thread per rank mpi_1 tests in parallel or up to one 4 rank, single thread
per rank mpi_4 tests. ctest has many options including regex filters for running tests that only match the specified
regex. See ctest --help for more information.

Adding and Removing tests

Add more tests by creating one or more input decks in /path/to/sparta/examples/SUITE. Each in.* file in
/path/to/sparta/examples/SUITE corresponds to an individual test and will be picked up by the CMake build
system if SPARTA_ENABLE_TESTING is ON.

To disable tests, remove the in.* file or remove the in. prefix from the in.TEST file by renaming the file to
DISABLED.in.TEST, for example.

Advanced Testing

To enable advanced testing, use the SPARTA_DSMC_TESTING_PATH option when configuring sparta:

cmake -C /path/to/sparta/cmake/presets/NAME.cmake -DSPARTA_MACHINE=advanced-test-tutorial
-DSPARTA_DSMC_TESTING_PATH=/path/to/dsmc_testing /path/to/sparta/cmake

Setting SPARTA_DSMC_TESTING_PATH to a valid dsmc_testing path adds tests in
SPARTA_DSMC_TESTING_PATH to be run by SPARTA_DSMC_TESTING_PATH/regression.py via ctest.

After configuring, build the binaries and run the tests via ctest:

make ctest

26

This will run all tests found in SPARTA_DSMC_TESTING_PATH/examples by
SPARTA_DSMC_TESTING_PATH/regression.py. If SPARTA_ENABLE_TESTING is ON, all tests found in
/path/to/sparta/examples will configured to run by SPARTA_DSMC_TESTING_PATH/regression.py.

SPARTA CMake Testing options

The following options allow the user more control over how the tests are run:

SPARTA_SPA_ARGS can be specified to add additional arguments for the sparta binaries being run by ctest.
This option is only applied if SPARTA_ENABLE_TESTING or SPARTA_DSMC_TESTING_PATH are
enabled.

SPARTA_DSMC_TESTING_DRIVER_ARGS can be specified to add additional arguments to the
SPARTA_DSMC_TESTING_PATH/regression.py script.

The SPARTA_CTEST_CONFIGS option allows the user to run the same set of binaries with different arguments.
SPARTA_CTEST_CONFIGS lets the user add additional ctest configurations, seperated by ';', that allow
SPARTA_SPA_ARGS_CONFIG_NAME or SPARTA_DSMC_TESTING_DRIVER_ARGS_CONFIG_NAME
to be specified. For example:

cmake -C /path/to/sparta/cmake/presets/NAME.cmake -DSPARTA_MACHINE=advanced-test-tutorial
-DSPARTA_DSMC_TESTING_PATH=/path/to/dsmc_testing
-DSPARTA_CTEST_CONFIGS="PARALLEL;SERIAL" -DSPARTA_SPA_ARGS_SERIAL=spa_serial_args
-DSPARTA_SPA_ARGS_PARALLEL=spa_parallel_args
-DSPARTA_DSMC_TESTING_DRIVER_ARGS_PARALLEL=driver_parallel_args
-DSPARTA_DSMC_TESTING_DRIVER_ARGS_PARALLEL=driver_serial_args /path/to/sparta/cmake

To verify that the binaries are being run with the proper arguments:

make ctest -C SERIAL -VV ctest -C PARALLEL -VV

The SPARTA_MULTIBUILD_CONFIGS option allows the user to run different sets of binaries for the same
input decks. SPARTA_MULTIBUILD_CONFIGS lets the user add additional build configurations, separated by
';', that will build sparta with the cache file located in
`SPARTA_MULTIBUILD_PRESET_DIR/CONFIG_NAME.cmake`. For example:

cmake -DSPARTA_MULTIBUILD_CONFIGS="test_mac;test_mac_mpi"
-DSPARTA_MULTIBUILD_PRESET_DIR=/path/to/sparta/cmake/presets/ /path/to/sparta/cmake

This cmake command assumes that /path/to/sparta/cmake/presets/test_mac_mpi,test_mac.cmake exist.

To verify that the correct binaries are being run:

make ctest -VV

2.6 Running SPARTA

By default, SPARTA runs by reading commands from standard input. Thus if you run the SPARTA executable by
itself, e.g.

spa_g++

27

it will simply wait, expecting commands from the keyboard. Typically you should put commands in an input
script and use I/O redirection, e.g.

spa_g++ <in.file

For parallel environments this should also work. If it does not, use the '-in' command-line switch, e.g.

spa_g++ -in in.file

Section 3 describes how input scripts are structured and what commands they contain.

You can test SPARTA on any of the sample inputs provided in the examples or bench directory. Input scripts are
named in.* and sample outputs are named log.*.name.P where name is a machine and P is the number of
processors it was run on.

Here is how you might run one of the benchmarks on a Linux box, using mpirun to launch a parallel job:

cd src make g++ cp spa_g++ ../bench cd ../bench mpirun -np 4 spa_g++ < in.free

or:

cd build
cmake -DCMAKE_CXX_COMPILER=g++ -DSPARTA_MACHINE=g++ /path/to/sparta/cmake
cp src/spa_g++ /path/to/bench
cd /path/to/bench
mpirun -np 4 spa_g++ <in.free

See this page for timings for this and the other benchmarks on various platforms.

The screen output from SPARTA is described in the next section. As it runs, SPARTA also writes a log.sparta file
with the same information.

Note that this sequence of commands copies the SPARTA executable (spa_g++) to the directory with the input
files. This may not be necessary, but some versions of MPI reset the working directory to where the executable is,
rather than leave it as the directory where you launch mpirun from (if you launch spa_g++ on its own and not
under mpirun). If that happens, SPARTA will look for additional input files and write its output files to the
executable directory, rather than your working directory, which is probably not what you want.

If SPARTA encounters errors in the input script or while running a simulation it will print an ERROR message
and stop or a WARNING message and continue. See Section 12 for a discussion of the various kinds of errors
SPARTA can or can't detect, a list of all ERROR and WARNING messages, and what to do about them.

SPARTA can run a problem on any number of processors, including a single processor. The random numbers
used by each processor will be different so you should only expect statistical consistency if the same problem is
run on different numbers of processors.

SPARTA can run as large a problem as will fit in the physical memory of one or more processors. If you run out
of memory, you must run on more processors or setup a smaller problem.

28

https://sparta.github.io/bench.html

2.7 Command-line options

At run time, SPARTA recognizes several optional command-line switches which may be used in any order. Either
the full word or a one-or-two letter abbreviation can be used:

-e or -echo•
-i or -in•
-h or -help•
-k or -kokkos•
-l or -log•
-p or -partition•
-pk or -package•
-pl or -plog•
-ps or -pscreen•
-sc or -screen•
-sf or -suffix•
-v or -var•

For example, spa_g++ might be launched as follows:

mpirun -np 16 spa_g++ -v f tmp.out -l my.log -sc none <in.sphere
mpirun -np 16 spa_g++ -var f tmp.out -log my.log -screen none <in.sphere

Here are the details on the options:

-echo style

Set the style of command echoing. The style can be none or screen or log or both. Depending on the style, each
command read from the input script will be echoed to the screen and/or logfile. This can be useful to figure out
which line of your script is causing an input error. The default value is log. The echo style can also be set by using
the echo command in the input script itself.

-in file

Specify a file to use as an input script. This is an optional switch when running SPARTA in one-partition mode. If
it is not specified, SPARTA reads its input script from stdin - e.g. spa_g++ < in.run. This is a required switch
when running SPARTA in multi-partition mode, since multiple processors cannot all read from stdin.

-help

Print a list of options compiled into this executable for each SPARTA style (fix, compute, collide, etc). SPARTA
will print the info and immediately exit if this switch is used.

-kokkos on/off keyword/value ...

Explicitly enable or disable KOKKOS support, as provided by the KOKKOS package. Even if SPARTA is built
with this package, as described above in Section 2.3, this switch must be set to enable running with the
KOKKOS-enabled styles the package provides. If the switch is not set (the default), SPARTA will operate as if
the KOKKOS package were not installed; i.e. you can run standard SPARTA for testing or benchmarking
purposes.

Additional optional keyword/value pairs can be specified which determine how Kokkos will use the underlying
hardware on your platform. These settings apply to each MPI task you launch via the "mpirun" or "mpiexec"

29

command. You may choose to run one or more MPI tasks per physical node. Note that if you are running on a
desktop machine, you typically have one physical node. On a cluster or supercomputer there may be dozens or
1000s of physical nodes.

Either the full word or an abbreviation can be used for the keywords. Note that the keywords do not use a leading
minus sign. I.e. the keyword is "t", not "-t". Also note that each of the keywords has a default setting. Example of
when to use these options and what settings to use on different platforms is given in Section 5.3.

d or device•
g or gpus•
t or threads•
n or numa•

device Nd

This option is only relevant if you built SPARTA with KOKKOS_DEVICES=Cuda, you have more than one
GPU per node, and if you are running with only one MPI task per node. The Nd setting is the ID of the GPU on
the node to run on. By default Nd = 0. If you have multiple GPUs per node, they have consecutive IDs numbered
as 0,1,2,etc. This setting allows you to launch multiple independent jobs on the node, each with a single MPI task
per node, and assign each job to run on a different GPU.

gpus Ng Ns

This option is only relevant if you built SPARTA with KOKKOS_DEVICES=Cuda, you have more than one
GPU per node, and you are running with multiple MPI tasks per node. The Ng setting is how many GPUs you
will use per node. The Ns setting is optional. If set, it is the ID of a GPU to skip when assigning MPI tasks to
GPUs. This may be useful if your desktop system reserves one GPU to drive the screen and the rest are intended
for computational work like running SPARTA. By default Ng = 1 and Ns is not set.

Depending on which flavor of MPI you are running, SPARTA will look for one of these 4 environment variables

SLURM_LOCALID (various MPI variants compiled with SLURM support)
MPT_LRANK (HPE MPI)
MV2_COMM_WORLD_LOCAL_RANK (Mvapich)
OMPI_COMM_WORLD_LOCAL_RANK (OpenMPI)

which are initialized by the "srun", "mpirun" or "mpiexec" commands. The environment variable setting for each
MPI rank is used to assign a unique GPU ID to the MPI task.

threads Nt

This option assigns Nt number of threads to each MPI task for performing work when Kokkos is executing in
OpenMP or pthreads mode. The default is Nt = 1, which essentially runs in MPI-only mode. If there are Np MPI
tasks per physical node, you generally want Np*Nt = the number of physical cores per node, to use your available
hardware optimally. If SPARTA is compiled with KOKKOS_DEVICES=Cuda, this setting has no effect.

-log file

Specify a log file for SPARTA to write status information to. In one-partition mode, if the switch is not used,
SPARTA writes to the file log.sparta. If this switch is used, SPARTA writes to the specified file. In
multi-partition mode, if the switch is not used, a log.sparta file is created with hi-level status information. Each
partition also writes to a log.sparta.N file where N is the partition ID. If the switch is specified in multi-partition
mode, the hi-level logfile is named "file" and each partition also logs information to a file.N. For both
one-partition and multi-partition mode, if the specified file is "none", then no log files are created. Using a log

30

command in the input script will override this setting. Option -plog will override the name of the partition log
files file.N.

-partition 8x2 4 5 ...

Invoke SPARTA in multi-partition mode. When SPARTA is run on P processors and this switch is not used,
SPARTA runs in one partition, i.e. all P processors run a single simulation. If this switch is used, the P processors
are split into separate partitions and each partition runs its own simulation. The arguments to the switch specify
the number of processors in each partition. Arguments of the form MxN mean M partitions, each with N
processors. Arguments of the form N mean a single partition with N processors. The sum of processors in all
partitions must equal P. Thus the command "-partition 8x2 4 5" has 10 partitions and runs on a total of 25
processors. Note that with MPI installed on a machine (e.g. your desktop), you can run on more (virtual)
processors than you have physical processors.

To run multiple independent simulatoins from one input script, using multiple partitions, see Section 6.3 of the
manual. World- and universe-style variables are useful in this context.

-package style args

Invoke the package command with style and args. The syntax is the same as if the command appeared at the top
of the input script. For example "-package kokkos on gpus 2" or "-pk kokkos g 2" is the same as package kokkos
g 2 in the input script. The possible styles and args are documented on the package doc page. This switch can be
used multiple times.

Along with the "-suffix" command-line switch, this is a convenient mechanism for invoking the KOKKOS
accelerator package and its options without having to edit an input script.

-plog file

Specify the base name for the partition log files, so partition N writes log information to file.N. If file is none,
then no partition log files are created. This overrides the filename specified in the -log command-line option. This
option is useful when working with large numbers of partitions, allowing the partition log files to be suppressed
(-plog none) or placed in a sub-directory (-plog replica_files/log.sparta) If this option is not used the log file for
partition N is log.sparta.N or whatever is specified by the -log command-line option.

-pscreen file

Specify the base name for the partition screen file, so partition N writes screen information to file.N. If file is
none, then no partition screen files are created. This overrides the filename specified in the -screen command-line
option. This option is useful when working with large numbers of partitions, allowing the partition screen files to
be suppressed (-pscreen none) or placed in a sub-directory (-pscreen replica_files/screen) If this option is not used
the screen file for partition N is screen.N or whatever is specified by the -screen command-line option.

-screen file

Specify a file for SPARTA to write its screen information to. In one-partition mode, if the switch is not used,
SPARTA writes to the screen. If this switch is used, SPARTA writes to the specified file instead and you will see
no screen output. In multi-partition mode, if the switch is not used, hi-level status information is written to the
screen. Each partition also writes to a screen.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level screen dump is named "file" and each partition also writes screen information to
a file.N. For both one-partition and multi-partition mode, if the specified file is "none", then no screen output is
performed. Option -pscreen will override the name of the partition screen files file.N.

-suffix style args

31

Use variants of various styles if they exist. The specified style can be kk. This refers to optional KOKKOS
package that SPARTA can be built with, as described above in Section 2.3.

Along with the "-package" command-line switch, this is a convenient mechanism for invoking the KOKKOS
accelerator package and its options without having to edit an input script.

As an example, the KOKKOS package provides a compute_style temp variant, with style name temp/kk. A
variant style can be specified explicitly in your input script, e.g. compute temp/kk. If the suffix command is used
with the appropriate style, you do not need to modify your input script. The specified suffix (kk) is automatically
appended whenever your input script command creates a new fix, compute, etc. If the variant version does not
exist, the standard version is created.

For the KOKKOS package, using this command-line switch also invokes the default KOKKOS settings, as if the
command "package kokkos" were used at the top of your input script. These settings can be changed by using the
"-package kokkos" command-line switch or the package kokkos command in your script.

The suffix command can also be used within an input script to set a suffix, or to turn off or back on any suffix
setting made via the command line.

-var name value1 value2 ...

Specify a variable that will be defined for substitution purposes when the input script is read. "Name" is the
variable name which can be a single character (referenced as $x in the input script) or a full string (referenced as
${abc}). An index-style variable will be created and populated with the subsequent values, e.g. a set of filenames.
Using this command-line option is equivalent to putting the line "variable name index value1 value2 ..." at the
beginning of the input script. Defining an index variable as a command-line argument overrides any setting for
the same index variable in the input script, since index variables cannot be re-defined. See the variable command
for more info on defining index and other kinds of variables and Section 3.2 for more info on using variables in
input scripts.

IMPORTANT NOTE: Currently, the command-line parser looks for arguments that start with "-" to indicate new
switches. Thus you cannot specify multiple variable values if any of they start with a "-", e.g. a negative numeric
value. It is OK if the first value1 starts with a "-", since it is automatically skipped.

2.8 SPARTA screen output

As SPARTA reads an input script, it prints information to both the screen and a log file about significant actions it
takes to setup a simulation. When the simulation is ready to begin, SPARTA performs various initializations and
prints the amount of memory (in MBytes per processor) that the simulation requires. It also prints details of the
initial state of the system. During the run itself, statistical information is printed periodically, every few timesteps.
When the run concludes, SPARTA prints the final state and a total run time for the simulation. It then appends
statistics about the CPU time and size of information stored for the simulation. An example set of statistics is
shown here:

Loop time of 0.639973 on 4 procs for 1000 steps with 45792 particles

MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total

Move | 0.10948 | 0.26191 | 0.42049 | 27.6 | 40.92
Coll | 0.013711 | 0.041659 | 0.070985 | 13.5 | 6.51
Sort | 0.01733 | 0.040286 | 0.063573 | 10.6 | 6.29
Comm | 0.02276 | 0.023555 | 0.02493 | 0.6 | 3.68
Modify | 0.00018167 | 0.024758 | 0.051345 | 15.6 | 3.87

32

Output | 0.0002172 | 0.0007354 | 0.0012152 | 0.0 | 0.11
Other | | 0.2471 | | | 38.61

Particle moves = 38096354 (38.1M)
Cells touched = 43236871 (43.2M)
Particle comms = 146623 (0.147M)
Boundary collides = 182782 (0.183M)
Boundary exits = 181792 (0.182M)
SurfColl checks = 7670863 (7.67M)
SurfColl occurs = 177740 (0.178M)
Surf reactions = 124169 (0.124M)
Collide attempts = 1232 (1K)
Collide occurs = 553 (0.553K)
Gas reactions = 23 (0.023K)
Particles stuck = 0

Particle-moves/CPUsec/proc: 1.4882e+07
Particle-moves/step: 38096.4
Cell-touches/particle/step: 1.13493
Particle comm iterations/step: 1.999
Particle fraction communicated: 0.00384874
Particle fraction colliding with boundary: 0.00479789
Particle fraction exiting boundary: 0.0047719
Surface-checks/particle/step: 0.201354
Surface-collisions/particle/step: 0.00466554
Surface-reactions/particle/step: 0.00325934
Collision-attempts/particle/step: 1.232
Collisions/particle/step: 0.553
Gas-reactions/particle/step: 0.023

Gas reaction tallies: style tce #-of-reactions 45 reaction O2 + N --> O + O + N: 10 reaction O2 + O --> O + O +
O: 5 reaction N2 + O --> N + N + O: 8

Surface reaction tallies: id 1 style global #-of-reactions 2 reaction all: 124025 reaction delete: 53525 reaction
create: 70500

Particles: 11448 ave 17655 max 5306 min
Histogram: 2 0 0 0 0 0 0 0 0 2
Cells: 100 ave 100 max 100 min
Histogram: 4 0 0 0 0 0 0 0 0 0
GhostCell: 21 ave 21 max 21 min
Histogram: 4 0 0 0 0 0 0 0 0 0
EmptyCell: 21 ave 21 max 21 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Surfs: 50 ave 50 max 50 min
Histogram: 4 0 0 0 0 0 0 0 0 0
GhostSurf: 0 ave 0 max 0 min
Histogram: 4 0 0 0 0 0 0 0 0 0

The first line gives the total CPU run time for the simulation, in seconds.

The next section gives a breakdown of the CPU timing (in seconds) in 7 categories. The first four are timings for
particles moves, which includes interaction with surface elements, then particle collisions, then sorting of particles
(required to perform collisions), and communication of particles between processors. The Modify section is time
for operations invoked by fixes and computes. The Output section is for dump command and statistical output.
The Other category is typically for load-imbalance, as some MPI tasks wait for others MPI tasks to complete. In
each category the min,ave,max time across processors is shown, as well as a variation, and the percentage of total
time.

33

The next section gives some statistics about the run. These are total counts of particle moves, grid cells touched
by particles, the number of particles communicated between processors, collisions of particles with the global
boundary and with surface elements (none in this problem), as well as collision and reaction statistics.

The next section gives additional statistics, normalized by timestep or processor count.

The next 2 sections are optional. The "Gas reaction tallies" section is only output if the react command is used.
For each reaction with a non-zero tally, the number of those reactions that occurred during the run is printed. The
"Surface reaction tallies" section is only output if the surf_react command was used one or more times, to assign
reaction models to individual surface elements or the box boundaries. For each of the commands, and each of its
reactions with a non-zero tally, the number of those reactions that occurred during the run is printed. Note that this
is effectively a summation over all the surface elements and/or box boundaries the surf_react command was used
to assign a reaction model to.

The last section is a histogramming across processors of various per-processor statistics: particle count, owned
grid cells, processor, ghost grid cells which are copies of cells owned by other processors, and empty cells which
are ghost cells without surface information (only used to pass particles to neighboring processors).

The ave value is the average across all processors. The max and min values are for any processor. The 10-bin
histogram shows the distribution of the value across processors. The total number of histogram counts is equal to
the number of processors.

34

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

3. Commands

This section describes how a SPARTA input script is formatted and what commands are used to define a
SPARTA simulation.

3.1 SPARTA input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically

3.1 SPARTA input script

SPARTA executes by reading commands from a input script (text file), one line at a time. When the input script
ends, SPARTA exits. Each command causes SPARTA to take some action. It may set an internal variable, read in
a file, or run a simulation. Most commands have default settings, which means you only need to use the command
if you wish to change the default.

In many cases, the ordering of commands in an input script is not important. However the following rules apply:

(1) SPARTA does not read your entire input script and then perform a simulation with all the settings. Rather, the
input script is read one line at a time and each command takes effect when it is read. Thus this sequence of
commands:

timestep 0.5
run 100
run 100

does something different than this sequence:

run 100
timestep 0.5
run 100

In the first case, the specified timestep (0.5 secs) is used for two simulations of 100 timesteps each. In the 2nd
case, the default timestep (1.0 sec is used for the 1st 100 step simulation and a 0.5 fmsec timestep is used for the
2nd one.

(2) Some commands are only valid when they follow other commands. For example you cannot define the grid
overlaying the simulation box until the box itself has been defined. Likewise you cannot read in triangulated
surfaces until a grid has been defined to store them.

Many input script errors are detected by SPARTA and an ERROR or WARNING message is printed. Section 12
gives more information on what errors mean. The documentation for each command lists restrictions on how the
command can be used.

35

https://sparta.github.io

3.2 Parsing rules

Each non-blank line in the input script is treated as a command. SPARTA commands are case sensitive.
Command names are lower-case, as are specified command arguments. Upper case letters may be used in file
names or user-chosen ID strings.

Here is how each line in the input script is parsed by SPARTA:

(1) If the last printable character on the line is a "&" character (with no surrounding quotes), the command is
assumed to continue on the next line. The next line is concatenated to the previous line by removing the "&"
character and newline. This allows long commands to be continued across two or more lines.

(2) All characters from the first "#" character onward are treated as comment and discarded. See an exception in
(6). Note that a comment after a trailing "&" character will prevent the command from continuing on the next
line. Also note that for multi-line commands a single leading "#" will comment out the entire command.

(3) The line is searched repeatedly for $ characters, which indicate variables that are replaced with a text string.
See an exception in (6).

If the $ is followed by curly brackets, then the variable name is the text inside the curly brackets. If no curly
brackets follow the $, then the variable name is the single character immediately following the $. Thus
${myTemp} and $x refer to variable names "myTemp" and "x".

How the variable is converted to a text string depends on what style of variable it is; see the variable doc page for
details. It can be a variable that stores multiple text strings, and return one of them. The returned text string can be
multiple "words" (space separated) which will then be interpreted as multiple arguments in the input command.
The variable can also store a numeric formula which will be evaluated and its numeric result returned as a string.

As a special case, if the $ is followed by parenthesis, then the text inside the parenthesis is treated as an
"immediate" variable and evaluated as an equal-style variable. This is a way to use numeric formulas in an input
script without having to assign them to variable names. For example, these 3 input script lines:

variable X equal (xlo+xhi)/2+sqrt(v_area)
region 1 block $X 2 INF INF EDGE EDGE
variable X delete

can be replaced by

region 1 block $((xlo+xhi)/2+sqrt(v_area)) 2 INF INF EDGE EDGE

so that you do not have to define (or discard) a temporary variable X.

Note that neither the curly-bracket or immediate form of variables can contain nested $ characters for other
variables to substitute for. Thus you cannot do this:

variable a equal 2
variable b2 equal 4
print "B2 = ${b$a}"

Nor can you specify this $($x-1.0) for an immediate variable, but you could use $(v_x-1.0), since the latter is
valid syntax for an equal-style variable.

See the variable command for more details of how strings are assigned to variables and evaluated, and how they
can be used in input script commands.

36

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain
letters, digits, underscores, or punctuation characters.

(5) The first word is the command name. All successive words in the line are arguments.

(6) If you want text with spaces to be treated as a single argument, it can be enclosed in either double or single
quotes. A long single argument enclosed in quotes can even span multiple lines if the "&" character is used, as
described above. E.g.

print "Volume = $v"
print 'Volume = $v'
variable a string "red green blue &
 purple orange cyan"
if "$steps > 1000" then quit

The quotes are removed when the single argument is stored internally.

See the dump modify format or print or if commands for examples. A "#" or "$" character that is between quotes
will not be treated as a comment indicator in (2) or substituted for as a variable in (3).

IMPORTANT NOTE: If the argument is itself a command that requires a quoted argument (e.g. using a print
command as part of an if or run every command), then the double and single quotes can be nested in the usual
manner. See the doc pages for those commands for examples. Only one of level of nesting is allowed, but that
should be sufficient for most use cases.

3.3 Input script structure

This section describes the structure of a typical SPARTA input script. The "examples" directory in the SPARTA
distribution contains sample input scripts; the corresponding problems are discussed in Section 5, and animated
on the SPARTA WWW Site.

A SPARTA input script typically has 4 parts:

Initialization1.
Problem definition2.
Settings3.
Run a simulation4.

The last 2 parts can be repeated as many times as desired. I.e. run a simulation, change some settings, run some
more, etc. Each of the 4 parts is now described in more detail. Remember that almost all the commands need only
be used if a non-default value is desired.

(1) Initialization

Set parameters that need to be defined before the simulation domain, particles, grid cells, and surfaces are defined.

Relevant commands include dimension, units, and seed.

(2) Problem definition

These items must be defined before running a SPARTA calculation, and typically in this order:

create_box for the simulation box•

37

https://sparta.github.io

create_grid or read_grid for grid cells•
read_surf or read_isurf for surfaces•
species for particle species properties•
create_particles for particles•

The first two are required. Surfaces are optional. Particles are also optional in the setup stage, since they can be
added as the simulation runs.

The system can also be load-balanced after the grid and/or particles are defined in the setup stage using the
balance_grid command. The grid can also be adapted before or betwee simulations using the adapt_grid
command.

(3) Settings

Once the problem geometry, grid cells, surfaces, and particles are defined, a variety of settings can be specified,
which include simulation parameters, output options, etc.

Commands that do this include

global timestep collide for a collision model react for a chemisty model fix for boundary conditions,
time-averaging, load-balancing, etc compute for diagnostic computations stats_style for screen output dump for
snapshots of particle, grid, and surface info dump image for on-the-fly images of the simulation

(4) Run a simulation

A simulation is run using the run command.

3.4 Commands listed by category

This section lists many SPARTA commands, grouped by category. The next section lists all commands
alphabetically.

Initialization:

dimension, package, seed, suffix, units

Problem definition:

boundary, bound_modify, create_box, create_grid, create_particles, mixture, read_grid, read_isurf, read_particles,
read_surf, read_restart, species,

Settings:

collide, collide_modify, compute, fix, global, react, react_modify, region, surf_collide, surf_modify, surf_react,
timestep, uncompute, unfix

Output:

dump, dump_image, dump_modify, restart, stats, stats_modify, stats_style, undump, write_grid, write_isurf,
write_surf, write_restart

38

Actions:

adapt_grid, balance_grid, run, scale_particles

Miscellaneous:

clear, echo, if, include, jump, label, log, next, partition, print, quit, shell, variable

3.5 Individual commands

This section lists all SPARTA commands alphabetically, with a separate listing below of styles within certain
commands. The previous section lists many of the same commands, grouped by category.

adapt_grid balance_grid boundary bound_modify clear collide
collide_modify compute create_box create_grid create_isurf create_particles

custom dimension dump dump image dump_modify dump movie
echo fix global group if include
jump label log mixture move_surf next

package partition print quit react react_modify
read_grid read_isurf read_particles read_restart read_surf region

remove_surf reset_timestep restart run scale_particles seed
shell species species_modify stats stats_modify stats_style
suffix surf_collide surf_react surf_modify timestep uncompute

undump unfix units variable write_grid write_isurf
write_restart write_surf

Fix styles

See the fix command for one-line descriptions of each style or click on the style itself for a full description. Some
of the styles have accelerated versions, which can be used if SPARTA is built with the appropriate accelerated
package. This is indicated by additional letters in parenthesis: k = KOKKOS.

ablate adapt (k) ambipolar (k) ave/grid (k) ave/histo (k) ave/histo/weight (k)
ave/surf ave/time balance (k) dt/reset (k) emit/face (k) emit/face/file
emit/surf field/grid field/particle grid/check (k) move/surf (k) print
surf/temp temp/global/rescale temp/rescale (k) vibmode (k)

Compute styles

See the compute command for one-line descriptions of each style or click on the style itself for a full description.
Some of the styles have accelerated versions, which can be used if SPARTA is built with the appropriate
accelerated package. This is indicated by additional letters in parenthesis: k = KOKKOS.

boundary (k) count (k) distsurf/grid (k) dt/grid (k) eflux/grid (k) fft/grid (k)
grid (k) isurf/grid ke/particle (k) lambda/grid (k) pflux/grid (k) property/grid (k)

react/boundary react/surf react/isurf/grid reduce sonine/grid (k) surf (k)
thermal/grid (k) temp (k) tvib/grid

39

Collide styles

See the collide command for details of each style. Some of the styles have accelerated versions, which can be
used if SPARTA is built with the appropriate accelerated package. This is indicated by additional letters in
parenthesis: k = KOKKOS.

vss (k)

Surface collide styles

See the surf_collide command for details of each style. Some of the styles have accelerated versions, which can
be used if SPARTA is built with the appropriate accelerated package. This is indicated by additional letters in
parenthesis: k = KOKKOS.

cll diffuse (k) impulsive
piston (k) specular (k) td
vanish (k)

Surface reaction styles

See the surf_react command for details of each style. Some of the styles have accelerated versions, which can be
used if SPARTA is built with the appropriate accelerated package. This is indicated by additional letters in
parenthesis: k = KOKKOS.

adsorb global (k)
prob (k)

40

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

4. Packages

This section gives an overview of the optional packages that extend SPARTA functionality with instructions on
how to build SPARTA with each of them. Packages are groups of files that enable a specific set of features. For
example, the KOKKOS package provides styles that can run on different hardware such as GPUs. You can see
the list of all packages and "make" commands to manage them by typing "make package" from within the src
directory of the SPARTA distribution or "cmake -DSPARTA_LIST_PKGS" from within a build directory.
Section 2.3 gives general info on how to install and un-install packages as part of the SPARTA build process.

Packages may require some additional code compiled located in the lib folder, or may require an external library
to be downloaded, compiled, installed, and SPARTA configured to know about its location and additional
compiler flags.

Following the next two tables is a sub-section for each package. It lists authors (if applicable) and summarizes the
package contents. It has specific instructions on how to install the package, including (if necessary) downloading
or building any extra library it requires. It also gives links to documentation, example scripts, and pictures/movies
(if available) that illustrate use of the package.

NOTE: To see the complete list of commands a package adds to SPARTA, just look at the files in its src
directory, e.g. "ls src/KOKKOS". Files with names that start with fix, compute, etc correspond to commands with
the same style names.

In these two tables, the "Example" column is a sub-directory in the examples directory of the distribution which
has an input script that uses the package. E.g. "fft" refers to the examples/fft directory; The "Library" column
indicates whether an extra library is needed to build and use the package:

dash = no library•
sys = system library: you likely have it on your machine•
int = internal library: provided with SPARTA, but you may need to build it•
ext = external library: you will need to download and install it on your machine•

SPARTA packages

Package Description Doc page Example Library
FFT fast Fourier transforms compute_style compute/fft/grid fft int or ext
KOKKOS Kokkos-enabled styles Section 5.3 Benchmarks -

FFT package

Contents:

Apply Fast Fourier Transforms (FFTs) to simulation data. The FFT library is specified in the Makefile.machine or
CMake using the FFT_INC, FFT_PATH, and FFT_LIB variables. Supported external FFT libraries that can be
specified include FFTW3 or MKL. If no FFT library is specified, SPARTA will use the internal KISS FFT library
that is included with SPARTA.

41

https://sparta.github.io
https://sparta.github.io/bench.html

Similarly an external FFT library can be specified for the KOKKOS package. Options are CUFFT, HIPFFT,
FFTW3, MKL, or MKL_GPU. If no FFT library is specified in the Makefile, SPARTA will use the internal
Kokkos version of the KISS FFT library that is included with SPARTA.

See the see discussion in Section 2.2 (step 6).

Install or un-install with make:

make yes-fft
make machine

make no-fft
make machine

Install or un-install with CMake:

cd build
cmake -C /path/to/sparta/cmake/presets/machine.cmake -DPKG_FFT=ON /path/to/sparta/cmake
make

cmake -C /path/to/sparta/cmake/presets/machine.cmake -DPKG_FFT=OFF /path/to/sparta/cmake
make

Supporting info:

compute fft/grid•
examples/fft•

KOKKOS package

Contents:

Styles adapted to compile using the Kokkos library which can convert them to OpenMP or CUDA code so that
they run efficiently on multicore CPUs, KNLs, or GPUs. All the styles have a "kk" as a suffix in their style name.
Section 5.3 gives details of what hardware and software is required on your system, and how to build and use this
package. Its styles can be invoked at run time via the "-sf kk" or "-suffix kk" command-line switches.

You must have a C++17 compatible compiler to use this package.

Authors: The KOKKOS package was created primarily by Stan Moore (Sandia), with contributions from other
folks as well. It uses the open-source Kokkos library which was developed by Carter Edwards, Christian Trott,
and others at Sandia, and which is included in the SPARTA distribution in lib/kokkos.

Install or un-install:

For the KOKKOS package, you have 3 choices when building. You can build with either CPU or KNL or GPU
support. Each choice requires additional settings in your Makefile.machine or machine.cmake file for the
KOKKOS_DEVICES and KOKKOS_ARCH settings. See the src/MAKE/OPTIONS/Makefile.kokkos* or
cmake/presets/*kokkos*.cmake files for examples. For CMake, it's best to start by copying
cmake/presets/kokkos_cuda.cmake to cmake/presets/machine.cmake.

For multicore CPUs using OpenMP:

42

https://github.com/kokkos

Using Makefiles:

KOKKOS_DEVICES = OpenMP
KOKKOS_ARCH = HSW # HSW = Haswell, SNB = SandyBridge, BDW = Broadwell, etc

Using CMake:

-DKokkos_ENABLE_OPENMP=ON -DKokkos_ARCH_HSW=ON

For Intel KNLs using OpenMP:

Using Makefiles:

KOKKOS_DEVICES = OpenMP
KOKKOS_ARCH = KNL

Using CMake:

-DKokkos_ENABLE_OPENMP=ON
-DKokkos_ARCH_KNL=ON

For NVIDIA GPUs using CUDA:

KOKKOS_DEVICES = Cuda
KOKKOS_ARCH = PASCAL60,POWER8 # P100 hosted by an IBM Power8, etc
KOKKOS_ARCH = KEPLER37,POWER8 # K80 hosted by an IBM Power8, etc

Using CMake:

-DKokkos_ENABLE_CUDA=ON
-DKokkos_ARCH_PASCAL60=ON -DKokkos_ARCH_POWER8=ON

For make with GPUs, the following 2 lines define a nvcc wrapper compiler, which will use nvcc for compiling
CUDA files or use a C++ compiler for non-Kokkos, non-CUDA files.

KOKKOS_ABSOLUTE_PATH = $(shell cd $(KOKKOS_PATH); pwd)
export OMPI_CXX = $(KOKKOS_ABSOLUTE_PATH)/bin/nvcc_wrapper
CC = mpicxx

For CMake, copy cmake/presets/kokkos_cuda.cmake so OMPI_CXX and CC are set properly.

Once you have an appropriate Makefile.machine or machine.cmake, you can install/un-install the package and
build SPARTA in the usual manner. Note that you cannot build one executable to run on multiple hardware
targets (CPU or KNL or GPU). You need to build SPARTA once for each hardware target, to produce a separate
executable.

Using make:

make yes-kokkos
make machine

make no-kokkos
make machine

Using CMake:

43

cmake -C /path/to/sparta/cmake/presets/machine.cmake /path/to/sparta/cmake
make

cmake -C /path/to/sparta/cmake/presets/machine.cmake -DPKG_KOKKOS=OFF /path/to/sparta/cmake
make

Supporting info:

src/KOKKOS: filenames -> commands•
src/KOKKOS/README•
lib/kokkos/README•
the Accelerating SPARTA section•
Section 5.3•
Section 2.6 -k on ...•
Section 2.6 -sf kk•
Section 2.6 -pk kokkos•
package kokkos•
Benchmarks page of web site•

44

https://sparta.github.io/bench.html

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

5. Accelerating SPARTA performance

This section describes various methods for improving SPARTA performance for different classes of problems
running on different kinds of machines.

Currently the only option is to use the KOKKOS accelerator packages provided with SPARTA that contains code
optimized for certain kinds of hardware, including multi-core CPUs, GPUs, and Intel Xeon Phi coprocessors.

5.1 Measuring performance•
5.2 Accelerator packages with optimized styles•
5.3 KOKKOS package•

The Benchmark page of the SPARTA web site gives performance results for the various accelerator packages
discussed in Section 5.2, for several of the standard SPARTA benchmark problems, as a function of problem size
and number of compute nodes, on different hardware platforms.

5.1 Measuring performance

Before trying to make your simulation run faster, you should understand how it currently performs and where the
bottlenecks are.

The best way to do this is run the your system (actual number of particles) for a modest number of timesteps (say
100 steps) on several different processor counts, including a single processor if possible. Do this for an
equilibrium version of your system, so that the 100-step timings are representative of a much longer run. There is
typically no need to run for 1000s of timesteps to get accurate timings; you can simply extrapolate from short
runs.

For the set of runs, look at the timing data printed to the screen and log file at the end of each SPARTA run. This
section of the manual has an overview.

Running on one (or a few processors) should give a good estimate of the serial performance and what portions of
the timestep are taking the most time. Running the same problem on a few different processor counts should give
an estimate of parallel scalability. I.e. if the simulation runs 16x faster on 16 processors, its 100% parallel
efficient; if it runs 8x faster on 16 processors, it's 50% efficient.

The most important data to look at in the timing info is the timing breakdown and relative percentages. For
example, trying different options for speeding up the FFTs will have little impact if they only consume 10% of the
run time. If the collide time is dominating, you may want to look at the KOKKOS package, as discussed below.
Comparing how the percentages change as you increase the processor count gives you a sense of how different
operations within the timestep are scaling.

Another important detail in the timing info are the histograms of particles counts and neighbor counts. If these
vary widely across processors, you have a load-imbalance issue. This often results in inaccurate relative timing
data, because processors have to wait when communication occurs for other processors to catch up. Thus the
reported times for "Communication" or "Other" may be higher than they really are, due to load-imbalance. If this
is an issue, you can uncomment the MPI_Barrier() lines in src/timer.cpp, and recompile SPARTA, to obtain
synchronized timings.

45

https://sparta.github.io
https://sparta.github.io/bench.html

5.2 Packages with optimized styles

Accelerated versions of various collide_style, fixes, computes, and other commands have been added to SPARTA
via the KOKKOS package, which may run faster than the standard non-accelerated versions.

All of these commands are in the KOKKOS package provided with SPARTA. An overview of packages is give in
Section packages.

SPARTA currently has acceleration support for three kinds of hardware, via the KOKKOS package: Many-core
CPUs, NVIDIA GPUs, and Intel Xeon Phi.

Whether you will see speedup for your hardware may depend on the size problem you are running and what
commands (accelerated and non-accelerated) are invoked by your input script. While these doc pages include
performance guidelines, there is no substitute for trying out the KOKKOS package.

Any accelerated style has the same name as the corresponding standard style, except that a suffix is appended.
Otherwise, the syntax for the command that uses the style is identical, their functionality is the same, and the
numerical results it produces should also be the same, except for precision and round-off effects, and differences
in random numbers.

For example, the KOKKOS package provides an accelerated variant of the Temperature Compute compute temp,
namely compute temp/kk

To see what accelerate styles are currently available, see Section 3.5 of the manual. The doc pages for individual
commands (e.g. compute temp) also list any accelerated variants available for that style.

To use an accelerator package in SPARTA, and one or more of the styles it provides, follow these general steps:

using make:

install the accelerator package make yes-fft, make yes-kokkos, etc
add compile/link flags to Makefile.machine in src/MAKE KOKKOS_ARCH=PASCAL60
re-build SPARTA make kokkos_cuda

or, using CMake from a build directory:

install the accelerator
package cmake -DPKG_FFT=ON -DPKG_KOKKOS=ON, etc

add compile/link flags cmake -C /path/to/sparta/cmake/presets/kokkos_cuda.cmake
-DKokkos_ARCH_PASCAL60=ON

re-build SPARTA make
Then do the following:

prepare and test a regular SPARTA simulation lmp_kokkos_cuda -in in.script; mpirun -np
32 lmp_kokkos_cuda -in in.script

enable specific accelerator support via '-k on' command-line switch, -k on g 1
set any needed options for the package via "-pk" command-line
switch or package command,

only if defaults need to be changed, -pk
kokkos react/retry yes

use accelerated styles in your input via "-sf" command-line switch or
suffix command lmp_kokkos_cuda -in in.script -sf kk

46

Note that the first 3 steps can be done as a single command with suitable make command invocations. This is
discussed in Section 4 of the manual, and its use is illustrated in the individual accelerator sections. Typically
these steps only need to be done once, to create an executable that uses one or more accelerator packages.

The last 4 steps can all be done from the command-line when SPARTA is launched, without changing your input
script, as illustrated in the individual accelerator sections. Or you can add package and suffix commands to your
input script.

The Benchmark page of the SPARTA web site gives performance results for the various accelerator packages for
several of the standard SPARTA benchmark problems, as a function of problem size and number of compute
nodes, on different hardware platforms.

Here is a brief summary of what the KOKKOS package provides.

Styles with a "kk" suffix are part of the KOKKOS package, and can be run using OpenMP on multicore CPUs,
on an NVIDIA GPU, or on an Intel Xeon Phi in "native" mode. The speed-up depends on a variety of factors,
as discussed on the KOKKOS accelerator page.

The KOKKOS accelerator package doc page explains:

what hardware and software the accelerated package requires•
how to build SPARTA with the accelerated package•
how to run with the accelerated package either via command-line switches or modifying the input
script

•

speed-ups to expect•
guidelines for best performance•
restrictions•

5.3 KOKKOS package

Kokkos is a templated C++ library that provides abstractions to allow a single implementation of an application
kernel (e.g. a collision style) to run efficiently on different kinds of hardware, such as GPUs, Intel Xeon Phis,
or many-core CPUs. Kokkos maps the C++ kernel onto different backend languages such as CUDA, OpenMP,
or Pthreads. The Kokkos library also provides data abstractions to adjust (at compile time) the memory layout
of data structures like 2d and 3d arrays to optimize performance on different hardware. For more information
on Kokkos, see Github. Kokkos is part of Trilinos. The Kokkos library was written primarily by Carter
Edwards, Christian Trott, and Dan Sunderland (all Sandia).

The SPARTA KOKKOS package contains versions of collide, fix, and compute styles that use data structures
and macros provided by the Kokkos library, which is included with SPARTA in /lib/kokkos. The KOKKOS
package was developed primarily by Stan Moore (Sandia) with contributions of various styles by others,
including Dan Ibanez (Sandia), Tim Fuller (Sandia), and Sam Mish (Sandia). For more information on
developing using Kokkos abstractions see the Kokkos programmers' guide at /lib/kokkos/doc/Kokkos_PG.pdf.

The KOKKOS package currently provides support for 3 modes of execution (per MPI task). These are Serial
(MPI-only for CPUs and Intel Phi), OpenMP (threading for many-core CPUs and Intel Phi), and CUDA (for
NVIDIA GPUs). You choose the mode at build time to produce an executable compatible with specific
hardware.

NOTE: Kokkos support within SPARTA must be built with a C++17 compatible compiler. For a list of
compilers that have been tested with the Kokkos library, see the Kokkos README.

•

47

https://sparta.github.io/bench.html
https://github.com/kokkos/kokkos
http://trilinos.sandia.gov/packages/kokkos
https://github.com/kokkos/kokkos/blob/master/README.md

Building SPARTA with the KOKKOS package with Makefiles:

To build with the KOKKOS package, start with the provided Kokkos Makefiles in /src/MAKE/. You may need
to modify the KOKKOS_ARCH variable in the Makefile to match your specific hardware. For example:

for Sandy Bridge CPUs, set KOKKOS_ARCH=SNB•
for Broadwell CPUs, set KOKKOS_ARCH=BWD•
for K80 GPUs, set KOKKOS_ARCH=KEPLER37•
for P100 GPUs and Power8 CPUs, set KOKKOS_ARCH=PASCAL60,POWER8•

Building SPARTA with the KOKKOS package with CMake:

To build with the KOKKOS package, start with the provided preset files in /cmake/presets/. You may need to
set -D Kokkos_ARCH_TYPE=ON to match your specific hardware. For example:

for Sandy Bridge CPUs, set -D Kokkos_ARCH_SNB=ON•
for Broadwell CPUs, set -D Kokkos_ARCH_BWD=ON•
for K80 GPUs, set -D Kokkos_ARCH_KEPLER37=ON•
for P100 GPUs and Power8 CPUs, set -D Kokkos_ARCH_PASCAL60=ON, -D
Kokkos_ARCH_POWER8=ON

•

See the Advanced Kokkos Options section below for a listing of all Kokkos architecture options.

Compile for CPU-only (MPI only, no threading):

Use a C++17 compatible compiler and set Kokkos architicture variable in as described above. Then do the
following:

using Makefiles:

cd sparta/src
make yes-kokkos
make kokkos_mpi_only

using CMake:

cd build
cmake -C /path/to/sparta/cmake/presets/kokkos_mpi_only.cmake
make

Compile for CPU-only (MPI plus OpenMP threading):

NOTE: To build with Kokkos support for OpenMP threading, your compiler must support the OpenMP
interface. You should have one or more multi-core CPUs so that multiple threads can be launched by each MPI
task running on a CPU.

Use a C++17 compatible compiler and set Kokkos architecture variable in as described above. Then do the
following:

using Makefiles:

cd sparta/src
make yes-kokkos
make kokkos_omp

48

using CMake:

cd build
cmake -C /path/to/sparta/cmake/presets/kokkos_omp.cmake
make

Compile for Intel KNL Xeon Phi (Intel Compiler, OpenMPI):

Use a C++17 compatible compiler and do the following:

using Makefiles:

cd sparta/src
make yes-kokkos
make kokkos_phi

using CMake:

cd build
cmake -C /path/to/sparta/cmake/presets/kokkos_phi.cmake
make

Compile for CPUs and GPUs (with OpenMPI or MPICH):

NOTE: To build with Kokkos support for NVIDIA GPUs, NVIDIA CUDA software version 11.0 or later must
be installed on your system.

Use a C++17 compatible compiler and set Kokkos architecture variable in for both GPU and CPU as described
above. Then do the following:

using Makefiles:

cd sparta/src
make yes-kokkos
make kokkos_cuda

using CMake:

cd build
cmake -C /path/to/sparta/cmake/presets/kokkos_cuda.cmake
make

Running SPARTA with the KOKKOS package:

All Kokkos operations occur within the context of an individual MPI task running on a single node of the
machine. The total number of MPI tasks used by SPARTA (one or multiple per compute node) is set in the
usual manner via the mpirun or mpiexec commands, and is independent of Kokkos. The mpirun or mpiexec
command sets the total number of MPI tasks used by SPARTA (one or multiple per compute node) and the
number of MPI tasks used per node. E.g. the mpirun command in OpenMPI does this via its -np and -npernode
switches. Ditto for MPICH via -np and -ppn.

Running on a multi-core CPU:

Here is a quick overview of how to use the KOKKOS package for CPU acceleration, assuming one or more
16-core nodes.

49

mpirun -np 16 spa_kokkos_mpi_only -k on -sf kk -in in.collide # 1 node, 16 MPI tasks/node, no multi-threading
mpirun -np 2 -ppn 1 spa_kokkos_omp -k on t 16 -sf kk -in in.collide # 2 nodes, 1 MPI task/node, 16 threads/task
mpirun -np 2 spa_kokkos_omp -k on t 8 -sf kk -in in.collide # 1 node, 2 MPI tasks/node, 8 threads/task
mpirun -np 32 -ppn 4 spa_kokkos_omp -k on t 4 -sf kk -in in.collide # 8 nodes, 4 MPI tasks/node, 4 threads/task

To run using the KOKKOS package, use the "-k on", "-sf kk" and "-pk kokkos" command-line switches in your
mpirun command. You must use the "-k on" command-line switch to enable the KOKKOS package. It takes
additional arguments for hardware settings appropriate to your system. Those arguments are documented here.
For OpenMP use:

-k on t Nt

The "t Nt" option specifies how many OpenMP threads per MPI task to use with a node. The default is Nt = 1,
which is MPI-only mode. Note that the product of MPI tasks * OpenMP threads/task should not exceed the
physical number of cores (on a node), otherwise performance will suffer. If hyperthreading is enabled, then the
product of MPI tasks * OpenMP threads/task should not exceed the physical number of cores * hardware
threads. The "-k on" switch also issues a "package kokkos" command (with no additional arguments) which
sets various KOKKOS options to default values, as discussed on the package command doc page.

The "-sf kk" command-line switch will automatically append the "/kk" suffix to styles that support it. In this
manner no modification to the input script is needed. Alternatively, one can run with the KOKKOS package by
editing the input script as described below.

NOTE: When using a single OpenMP thread, the Kokkos Serial backend (i.e. Makefile.kokkos_mpi_only) will
give better performance than the OpenMP backend (i.e. Makefile.kokkos_omp) because some of the overhead
to make the code thread-safe is removed.

NOTE: The default for the package kokkos command is to use "threaded" communication. However, when
running on CPUs, it will typically be faster to use "classic" non-threaded communication. Use the "-pk kokkos"
command-line switch to change the default package kokkos options. See its doc page for details and default
settings. Experimenting with its options can provide a speed-up for specific calculations. For example:

mpirun -np 16 spa_kokkos_mpi_only -k on -sf kk -pk kokkos comm classic -in in.collide # non-threaded comm

For OpenMP, the KOKKOS package uses data duplication (i.e. thread-private arrays) by default to avoid
thread-level write conflicts in some compute styles. Data duplication is typically fastest for small numbers of
threads (i.e. 8 or less) but does increase memory footprint and is not scalable to large numbers of threads. An
alternative to data duplication is to use thread-level atomics, which don't require duplication. When using the
Kokkos Serial backend or the OpenMP backend with a single thread, no duplication or atomics are used. For
CUDA, the KOKKOS package always uses atomics in these computes when necessary. The use of atomics
instead of duplication can be forced by compiling with the "-DSPARTA_KOKKOS_USE_ATOMICS"
compile switch.

Core and Thread Affinity:

When using multi-threading, it is important for performance to bind both MPI tasks to physical cores, and
threads to physical cores, so they do not migrate during a simulation.

If you are not certain MPI tasks are being bound (check the defaults for your MPI installation), binding can be
forced with these flags:

OpenMPI 1.8: mpirun -np 2 -bind-to socket -map-by socket ./spa_openmpi ...
Mvapich2 2.0: mpiexec -np 2 -bind-to socket -map-by socket ./spa_mvapich ...

50

For binding threads with KOKKOS OpenMP, use thread affinity environment variables to force binding. With
OpenMP 3.1 (gcc 4.7 or later, intel 12 or later) setting the environment variable OMP_PROC_BIND=true
should be sufficient. In general, for best performance with OpenMP 4.0 or better set
OMP_PROC_BIND=spread and OMP_PLACES=threads. For binding threads with the KOKKOS pthreads
option, compile SPARTA the KOKKOS HWLOC=yes option as described below.

Running on Knight's Landing (KNL) Intel Xeon Phi:

Here is a quick overview of how to use the KOKKOS package for the Intel Knight's Landing (KNL) Xeon Phi:

KNL Intel Phi chips have 68 physical cores. Typically 1 to 4 cores are reserved for the OS, and only 64 or 66
cores are used. Each core has 4 hyperthreads, so there are effectively N = 256 (4*64) or N = 264 (4*66) cores
to run on. The product of MPI tasks * OpenMP threads/task should not exceed this limit, otherwise
performance will suffer. Note that with the KOKKOS package you do not need to specify how many KNLs
there are per node; each KNL is simply treated as running some number of MPI tasks.

Examples of mpirun commands that follow these rules are shown below.

Intel KNL node with 64 cores (256 threads/node via 4x hardware threading):
mpirun -np 64 spa_kokkos_phi -k on t 4 -sf kk -in in.collide # 1 node, 64 MPI tasks/node, 4 threads/task
mpirun -np 66 spa_kokkos_phi -k on t 4 -sf kk -in in.collide # 1 node, 66 MPI tasks/node, 4 threads/task
mpirun -np 32 spa_kokkos_phi -k on t 8 -sf kk -in in.collide # 1 node, 32 MPI tasks/node, 8 threads/task
mpirun -np 512 -ppn 64 spa_kokkos_phi -k on t 4 -sf kk -in in.collide # 8 nodes, 64 MPI tasks/node, 4 threads/task

The -np setting of the mpirun command sets the number of MPI tasks/node. The "-k on t Nt" command-line
switch sets the number of threads/task as Nt. The product of these two values should be N, i.e. 256 or 264.

NOTE: The default for the package kokkos command is to use "threaded" communication. However, when
running on KNL, it will typically be faster to use "classic" non-threaded communication. Use the "-pk kokkos"
command-line switch to change the default package kokkos options. See its doc page for details and default
settings. Experimenting with its options can provide a speed-up for specific calculations. For example:

mpirun -np 64 spa_kokkos_phi -k on t 4 -sf kk -pk kokkos comm classic -in in.collide # non-threaded comm

NOTE: MPI tasks and threads should be bound to cores as described above for CPUs.

NOTE: To build with Kokkos support for Intel Xeon Phi coprocessors such as Knight's Corner (KNC), your
system must be configured to use them in "native" mode, not "offload" mode.

Running on GPUs:

Use the "-k" command-line switch to specify the number of GPUs per node, and the number of threads per MPI
task. Typically the -np setting of the mpirun command should set the number of MPI tasks/node to be equal to
the # of physical GPUs on the node. You can assign multiple MPI tasks to the same GPU with the KOKKOS
package, but this is usually only faster if significant portions of the input script have not been ported to use
Kokkos. Using CUDA MPS is recommended in this scenario. As above for multi-core CPUs (and no GPU), if
N is the number of physical cores/node, then the number of MPI tasks/node should not exceed N.

-k on g Ng

Here are examples of how to use the KOKKOS package for GPUs, assuming one or more nodes, each with two
GPUs.

mpirun -np 2 spa_kokkos_cuda -k on g 2 -sf kk -in in.collide # 1 node, 2 MPI tasks/node, 2 GPUs/node

51

mpirun -np 32 -ppn 2 spa_kokkos_cuda -k on g 2 -sf kk -in in.collide # 16 nodes, 2 MPI tasks/node, 2 GPUs/node (32 GPUs total)

NOTE: Use the "-pk kokkos" command-line switch to change the default package kokkos options. See its doc
page for details and default settings. For example:

mpirun -np 2 spa_kokkos_cuda -k on g 2 -sf kk -pk kokkos gpu/aware off -in in.collide # set gpu/aware MPI support off

NOTE: Using OpenMP threading and CUDA together is currently not possible with the SPARTA KOKKOS
package.

NOTE: For good performance of the KOKKOS package on GPUs, you must have Kepler generation GPUs (or
later). The Kokkos library exploits texture cache options not supported by Telsa generation GPUs (or older).

NOTE: When using a GPU, you will achieve the best performance if your input script does not use fix or
compute styles which are not yet Kokkos-enabled. This allows data to stay on the GPU for multiple timesteps,
without being copied back to the host CPU. Invoking a non-Kokkos fix or compute, or performing I/O for stat
or dump output will cause data to be copied back to the CPU incurring a performance penalty.

Run with the KOKKOS package by editing an input script:

Alternatively the effect of the "-sf" or "-pk" switches can be duplicated by adding the package kokkos or suffix
kk commands to your input script.

The discussion above for building SPARTA with the KOKKOS package, the mpirun/mpiexec command, and
setting appropriate thread are the same.

You must still use the "-k on" command-line switch to enable the KOKKOS package, and specify its additional
arguments for hardware options appropriate to your system, as documented above.

You can use the suffix kk command, or you can explicitly add a "kk" suffix to individual styles in your input
script, e.g.

collide vss/kk air ar.vss

You only need to use the package kokkos command if you wish to change any of its option defaults, as set by
the "-k on" command-line switch.

Speed-ups to expect:

The performance of KOKKOS running in different modes is a function of your hardware, which
KOKKOS-enable styles are used, and the problem size.

Generally speaking, when running on CPUs only, with a single thread per MPI task, the performance difference
of a KOKKOS style and (un-accelerated) styles (MPI-only mode) is typically small (less than 20%).

See the Benchmark page of the SPARTA web site for performance of the KOKKOS package on different
hardware.

Advanced Kokkos options:

There are other allowed options when building with the KOKKOS package. A few options are listed here; for a
full list of all options, please refer to the Kokkos documentation. As above, these options can be set as variables
on the command line, in a Makefile, or in a CMake presets file. For default CMake values, see cmake -LH |

52

https://sparta.github.io/bench.html

grep -i kokkos.

The CMake option Kokkos_ENABLE_OPTION or the makefile setting KOKKOS_DEVICE=OPTION sets the
parallelization method used for Kokkos code (within SPARTA). For example, the CMake option
Kokkos_ENABLE_SERIAL=ON or the makefile setting KOKKOS_DEVICES=SERIAL means that no
threading will be used. The CMake option Kokkos_ENABLE_OPENMP=ON or the makefile setting
KOKKOS_DEVICES=OPENMP means that OpenMP threading will be used. The CMake option
Kokkos_ENABLE_CUDA=ON or the makefile setting KOKKOS_DEVICES=CUDA means an NVIDIA GPU
running CUDA will be used.

As described above, the CMake option Kokkos_ARCH_TYPE=ON or the makefile setting
KOKKOS_ARCH=TYPE enables compiler switches needed when compiling for a specific hardware:

Arch-ID HOST or GPU Description
NATIVE HOST Local machine
AMDAVX HOST AMD chip
ARMV80 HOST ARMv8.0 Compatible CPU
ARMV81 HOST ARMv8.1 Compatible CPU
ARMV8_THUNDERX HOST ARMv8 Cavium ThunderX CPU
ARMV8_THUNDERX2 HOST ARMv8 Cavium ThunderX2 CPU
A64FX HOST ARMv8.2 with SVE Support
ARMV9_GRACE HOST ARMv9 NVIDIA Grace CPU
SNB HOST Intel Sandy/Ivy Bridge CPUs
HSW HOST Intel Haswell CPUs
BDW HOST Intel Broadwell Xeon E-class CPUs
ICL HOST Intel Ice Lake Client CPUs (AVX512)
ICX HOST Intel Ice Lake Xeon Server CPUs (AVX512)
SKL HOST Intel Skylake Client CPUs
SKX HOST Intel Skylake Xeon Server CPUs (AVX512)
KNC HOST Intel Knights Corner Xeon Phi
KNL HOST Intel Knights Landing Xeon Phi
SPR HOST Intel Sapphire Rapids Xeon Server CPUs (AVX512)
POWER8 HOST IBM POWER8 CPUs
POWER9 HOST IBM POWER9 CPUs
ZEN HOST AMD Zen architecture
ZEN2 HOST AMD Zen2 architecture
ZEN3 HOST AMD Zen3 architecture
RISCV_SG2042 HOST SG2042 (RISC-V) CPUs
RISCV_RVA22V HOST RVA22V (RISC-V) CPUs
KEPLER30 GPU NVIDIA Kepler generation CC 3.0
KEPLER32 GPU NVIDIA Kepler generation CC 3.2
KEPLER35 GPU NVIDIA Kepler generation CC 3.5
KEPLER37 GPU NVIDIA Kepler generation CC 3.7
MAXWELL50 GPU NVIDIA Maxwell generation CC 5.0
MAXWELL52 GPU NVIDIA Maxwell generation CC 5.2

53

MAXWELL53 GPU NVIDIA Maxwell generation CC 5.3
PASCAL60 GPU NVIDIA Pascal generation CC 6.0
PASCAL61 GPU NVIDIA Pascal generation CC 6.1
VOLTA70 GPU NVIDIA Volta generation CC 7.0
VOLTA72 GPU NVIDIA Volta generation CC 7.2
TURING75 GPU NVIDIA Turing generation CC 7.5
AMPERE80 GPU NVIDIA Ampere generation CC 8.0
AMPERE86 GPU NVIDIA Ampere generation CC 8.6
ADA89 GPU NVIDIA Ada generation CC 8.9
HOPPER90 GPU NVIDIA Hopper generation CC 9.0
AMD_GFX906 GPU AMD GPU MI50/60
AMD_GFX908 GPU AMD GPU MI100
AMD_GFX90A GPU AMD GPU MI200
AMD_GFX940 GPU AMD GPU MI300
AMD_GFX942 GPU AMD GPU MI300
AMD_GFX942_APU GPU AMD APU MI300A
AMD_GFX1030 GPU AMD GPU V620/W6800
AMD_GFX1100 GPU AMD GPU RX7900XTX
AMD_GFX1103 GPU AMD GPU PHOENIX
INTEL_GEN GPU SPIR64-based devices, e.g. Intel GPUs, using JIT
INTEL_DG1 GPU Intel Iris XeMAX GPU
INTEL_GEN9 GPU Intel GPU Gen9
INTEL_GEN11 GPU Intel GPU Gen11
INTEL_GEN12LP GPU Intel GPU Gen12LP
INTEL_XEHP GPU Intel GPU Xe-HP
INTEL_PVC GPU Intel GPU Ponte Vecchio

The CMake option Kokkos_ENABLE_CUDA_OPTION or the makefile setting
KOKKOS_CUDA_OPTIONS=OPTION are additional options for CUDA. For example, the CMake option
Kokkos_ENABLE_CUDA_UVM=ON or the makefile setting
KOKKOS_CUDA_OPTIONS="enable_lambda,force_uvm" enables the use of CUDA "Unified Virtual
Memory" (UVM) in Kokkos. UVM allows to one to use the host CPU memory to supplement the memory used
on the GPU (with some performance penalty) and thus enables running larger problems that would otherwise
not fit into the RAM on the GPU. Please note, that the SPARTA KOKKOS package must always be compiled
with the CMake option Kokkos_ENABLE_CUDA_LAMBDA=ON or the makefile setting
KOKKOS_CUDA_OPTIONS=enable_lambda when using GPUs. The CMake configuration will thus always
enable it.

The CMake option Kokkos_ENABLE_DEBUG=ON or the makefile setting KOKKOS_DEBUG=yes is useful
when developing a Kokkos-enabled style within SPARTA. This option enables printing of run-time debugging
information that can be useful and also enables runtime bounds checking on Kokkos data structures, but may
slow down performance.

Restrictions:

Currently, there are no precision options with the KOKKOS package. All compilation and computation is
performed in double precision.

54

.Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

6. How-to discussions

The following sections describe how to perform common tasks using SPARTA, as well as provide some
techinical details about how SPARTA works.

6.1 2d simulations
6.2 Axisymmetric simulations
6.3 Running multiple simulations from one input script
6.4 Output from SPARTA (stats, dumps, computes, fixes, variables)
6.5 Visualizing SPARTA snapshots
6.6 Library interface to SPARTA
6.7 Coupling SPARTA to other codes
6.8 Details of grid geometry in SPARTA
6.9 Details of surfaces in SPARTA
6.10 Restarting a simulation
6.11 Using the ambipolar approximation
6.12 Using multiple vibrational energy levels
6.13 Surface elements: explicit, implicit, distributed
6.14 Implicit surface ablation
6.15 Transparent surface elements
6.16 Visualizing SPARTA output with ParaView
6.17 Custom per-particle, per-grid, per-surf attributes
6.18 Variable timestep simulations

The example input scripts included in the SPARTA distribution and highlighted in Section 5 of the manual also
show how to setup and run various kinds of simulations.

6.1 2d simulations

In SPARTA, as in other DSMC codes, a 2d simulation means that particles move only in the xy plane, but still
have all 3 xyz components of velocity. Only the xy components of velocity are used to advect the particles, so that
they stay in the xy plane, but all 3 components are used to compute collision parameters, temperatures, etc. Here
are the steps to take in an input script to setup a 2d model.

Use the dimension command to specify a 2d simulation.•
Make the simulation box periodic in z via the boundary command. This is the default.•
Using the create box command, set the z boundaries of the box to values that straddle the z = 0.0 plane.
I.e. zlo < 0.0 and zhi > 0.0. Typical values are -0.5 and 0.5, but regardless of the actual values, SPARTA
computes the "volume" of 2d grid cells as if their z-dimension length is 1.0, in whatever units are defined.
This volume is used with the global nrho setting to calculate numbers of particles to create or insert. It is
also used to compute collision frequencies.

•

If surfaces are defined via the read_surf command, use 2d objects defined by line segements.•

Many of the example input scripts included in the SPARTA distribution are for 2d models.

55

https://sparta.github.io

6.2 Axisymmetric simulations

In SPARTA, an axi-symmetric model is a 2d model. An example input script is provided in the
examples/axisymm directory.

An axi-symmetric problem can be setup using the following commands:

Set dimension = 2 via the dimension command.•
Set the y-dimension lower boundary to "a" via the boundary command.•
The y-dimension upper boundary can be anything except "a" or "p" for periodic.•
Use the create_box command to define a 2d simulation box with ylo = 0.0.•

If desired, grid cell weighting can be enabled via the global weight command. The volume or radial setting can be
used for axi-symmetric models.

Grid cell weighting affects how many particles per grid cell are created when using the create_particles and fix
emit command variants.

During a run, it also triggers particle cloning and destruction as particles move from grid cell to grid cell. This can
be important for inducing every grid cell to contain roughly the same number of particles, even if cells are of
varying volume, as they often are in axi-symmetric models. Note that the effective volume of an axi-symmetric
grid cell is the volume its 2d area sweeps out when rotated around the y=0 axis of symmetry.

6.3 Running multiple simulations from one input script

This can be done in several ways. See the documentation for individual commands for more details on how these
examples work.

If "multiple simulations" means continue a previous simulation for more timesteps, then you simply use the run
command multiple times. For example, this script

read_grid data.grid
create_particles 1000000
run 10000
run 10000
run 10000
run 10000
run 10000

would run 5 successive simulations of the same system for a total of 50,000 timesteps.

If you wish to run totally different simulations, one after the other, the clear command can be used in between
them to re-initialize SPARTA. For example, this script

read_grid data.grid
create_particles 1000000
run 10000
clear
read_grid data.grid2
create_particles 500000
run 10000

would run 2 independent simulations, one after the other.

56

For large numbers of independent simulations, you can use variables and the next and jump commands to loop
over the same input script multiple times with different settings. For example, this script, named in.flow

variable d index run1 run2 run3 run4 run5 run6 run7 run8
shell cd $d
read_grid data.grid
create_particles 1000000
run 10000
shell cd ..
clear
next d
jump in.flow

would run 8 simulations in different directories, using a data.grid file in each directory. The same concept could
be used to run the same system at 8 different gas densities, using a density variable and storing the output in
different log and dump files, for example

variable a loop 8
variable rho index 1.0e18 4.0e18 1.0e19 4.0e19 1.0e20 4.0e20 1.0e21 4.0e21
log log.$a
read data.grid
global nrho ${rho}
...
compute myGrid grid all all n temp
dump 1 grid all 1000 dump.$a id c_myGrid
run 100000
clear
next rho
next a
jump in.flow

All of the above examples work whether you are running on 1 or multiple processors, but assumed you are
running SPARTA on a single partition of processors. SPARTA can be run on multiple partitions via the
"-partition" command-line switch as described in Section 2.5 of the manual.

In the last 2 examples, if SPARTA were run on 3 partitions, the same scripts could be used if the "index" and
"loop" variables were replaced with universe-style variables, as described in the variable command. Also, the
"next rho" and "next a" commands would need to be replaced with a single "next a rho" command. With these
modifications, the 8 simulations of each script would run on the 3 partitions one after the other until all were
finished. Initially, 3 simulations would be started simultaneously, one on each partition. When one finished, that
partition would then start the 4th simulation, and so forth, until all 8 were completed.

6.4 Output from SPARTA (stats, dumps, computes, fixes, variables)

There are four basic kinds of SPARTA output:

Statistical output, which is a list of quantities printed every few timesteps to the screen and logfile.•
Dump files, which contain snapshots of particle, grid cell, or surface element quantities and are written at
a specified frequency.

•

Certain fixes can output user-specified quantities directly to files: fix ave/time for time averaging, and fix
print for single-line output of variables. Fix print can also output to the screen.

•

Restart files.•

A simulation prints one set of statistical output and (optionally) restart files. It can generate any number of dump
files and fix output files, depending on what dump and fix commands you specify.

57

As discussed below, SPARTA gives you a variety of ways to determine what quantities are computed and printed
when the statistics, dump, or fix commands listed above perform output. Throughout this discussion, note that
users can also add their own computes and fixes to SPARTA (see Section 10) which can generate values that can
then be output with these commands.

The following sub-sections discuss different SPARTA commands related to output and the kind of data they
operate on and produce:

Global/per-particle/per-grid/per-surf data•
Scalar/vector/array data•
Statistical output•
Dump file output•
Fixes that write output files•
Computes that process output quantities•
Computes that generate values to output•
Fixes that generate values to output•
Variables that generate values to output•
Summary table of output options and data flow between commands•

Global/per-particle/per-grid/per-surf data

Various output-related commands work with four different styles of data: global, per particle, per grid, or per surf.
A global datum is one or more system-wide values, e.g. the temperature of the system. A per particle datum is one
or more values per partice, e.g. the kinetic energy of each particle. A per grid datum is one or more values per grid
cell, e.g. the temperature of the particles in the grid cell. A per surf datum is one or more values per surface
element, e.g. the count of particles that collided with the surface element.

Scalar/vector/array data

Global, per particle, per grid, and per surf datums can each come in three kinds: a single scalar value, a vector of
values, or a 2d array of values. The doc page for a "compute" or "fix" or "variable" that generates data will specify
both the style and kind of data it produces, e.g. a per grid vector.

When a quantity is accessed, as in many of the output commands discussed below, it can be referenced via the
following bracket notation, where ID in this case is the ID of a compute. The leading "c_" would be replaced by
"f_" for a fix, or "v_" for a variable:

c_ID entire scalar, vector, or array
c_ID[I] one element of vector, one column of array
c_ID[I][J] one element of array

In other words, using one bracket reduces the dimension of the data once (vector -> scalar, array -> vector). Using
two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar values as input can
typically also process elements of a vector or array.

Statistical output

The frequency and format of statistical output is set by the stats, stats_style, and stats_modify commands. The
stats_style command also specifies what values are calculated and written out. Pre-defined keywords can be
specified (e.g. np, ncoll, etc). Three additional kinds of keywords can also be specified (c_ID, f_ID, v_name),
where a compute or fix or variable provides the value to be output. In each case, the compute, fix, or variable
must generate global values to be used as an argument of the stats_style command.

58

Dump file output

Dump file output is specified by the dump and dump_modify commands. There are several pre-defined formats:
dump particle, dump grid, dump surf, etc.

Each of these allows specification of what values are output with each particle, grid cell, or surface element.
Pre-defined attributes can be specified (e.g. id, x, y, z for particles or id, vol for grid cells, etc). Three additional
kinds of keywords can also be specified (c_ID, f_ID, v_name), where a compute or fix or variable provides the
values to be output. In each case, the compute, fix, or variable must generate per particle, per grid, or per surf
values for input to the corresponding dump command.

Fixes that write output files

Two fixes take various quantities as input and can write output files: fix ave/time and fix print.

The fix ave/time command enables direct output to a file and/or time-averaging of global scalars or vectors. The
user specifies one or more quantities as input. These can be global compute values, global fix values, or variables
of any style except the particle style which does not produce single values. Since a variable can refer to keywords
used by the stats_style command (like particle count), a wide variety of quantities can be time averaged and/or
output in this way. If the inputs are one or more scalar values, then the fix generates a global scalar or vector of
output. If the inputs are one or more vector values, then the fix generates a global vector or array of output. The
time-averaged output of this fix can also be used as input to other output commands.

The fix print command can generate a line of output written to the screen and log file or to a separate file,
periodically during a running simulation. The line can contain one or more variable values for any style variable
except the particle style. As explained above, variables themselves can contain references to global values
generated by stats keywords, computes, fixes, or other variables. Thus the fix print command is a means to output
a wide variety of quantities separate from normal statistical or dump file output.

Computes that process output quantities

The compute reduce command takes one or more per particle or per grid or per surf vector quantities as inputs and
"reduces" them (sum, min, max, ave) to scalar quantities. These are produced as output values which can be used
as input to other output commands.

Computes that generate values to output

Every compute in SPARTA produces either global or per particle or per grid or per surf values. The values can be
scalars or vectors or arrays of data. These values can be output using the other commands described in this
section. The doc page for each compute command describes what it produces. Computes that produce per particle
or per grid or per surf values have the word "particle" or "grid" or "surf" in their style name. Computes without
those words produce global values.

Fixes that generate values to output

Some fixes in SPARTA produces either global or per particle or per grid or per surf values which can be accessed
by other commands. The values can be scalars or vectors or arrays of data. These values can be output using the
other commands described in this section. The doc page for each fix command tells whether it produces any
output quantities and describes them.

Two fixes of particular interest for output are the fix ave/grid and fix ave/surf commands.

59

The fix ave/grid command enables time-averaging of per grid vectors. The user specifies one or more quantities
as input. These can be per grid vectors or ararys from compute or fix commands. If the input is a single vector,
then the fix generates a per grid vector. If the input is multiple vectors or array, the fix generates a per grid array.
The time-averaged output of this fix can also be used as input to other output commands.

The fix ave/surf command enables time-averaging of per surf vectors. The user specifies one or more quantities as
input. These can be per surf vectors or ararys from compute or fix commands. If the input is a single vector, then
the fix generates a per surf vector. If the input is multiple vectors or array, the fix generates a per surf array. The
time-averaged output of this fix can also be used as input to other output commands.

Variables that generate values to output

Variables defined in an input script generate either a global scalar value or a per particle vector (only
particle-style variables) when it is accessed. The formulas used to define equal- and particle-style variables can
contain references to the stats_style keywords and to global and per particle data generated by computes, fixes,
and other variables. The values generated by variables can be output using the other commands described in this
section.

Summary table of output options and data flow between commands

This table summarizes the various commands that can be used for generating output from SPARTA. Each
command produces output data of some kind and/or writes data to a file. Most of the commands can take data
from other commands as input. Thus you can link many of these commands together in pipeline form, where data
produced by one command is used as input to another command and eventually written to the screen or to a file.
Note that to hook two commands together the output and input data types must match, e.g. global/per atom/local
data and scalar/vector/array data.

Also note that, as described above, when a command takes a scalar as input, that could be an element of a vector
or array. Likewise a vector input could be a column of an array.

Command Input Output
stats_style global scalars screen, log file
dump particle per particle vectors dump file
dump grid per grid vectors dump file
dump surf per surf vectors dump file
fix print global scalar from variable screen, file
print global scalar from variable screen
computes N/A global or per particle/grid/surf scalar/vector/array
fixes N/A global or per particle/grid/surf scalar/vector/array
variables global scalars, per particle vectors global scalar, per particle vector
compute reduce per particle/grid/surf vectors global scalar/vector
fix ave/time global scalars/vectors global scalar/vector/array, file
fix ave/grid per grid vectors/arrays per grid vector/array
fix ave/surf per surf vectors/arrays per surf vector/array

60

6.5 Visualizing SPARTA snapshots

The dump image command can be used to do on-the-fly visualization as a simulation proceeds. It works by
creating a series of JPG or PNG or PPM files on specified timesteps, as well as movies. The images can include
particles, grid cell quantities, and/or surface element quantities. This is not a substitute for using an interactive
visualization package in post-processing mode, but on-the-fly visualization can be useful for debugging or making
a high-quality image of a particular snapshot of the simulation.

The dump command can be used to create snapshots of particle, grid cell, or surface element data as a simulation
runs. These can be post-processed and read in to other visualization packages.

A Python-based toolkit distributed by our group can read SPARTA particle dump files with columns of
user-specified particle information, and convert them to various formats or pipe them into visualization software
directly. See the Pizza.py WWW site for details. Specifically, Pizza.py can convert SPARTA particle dump files
into PDB, XYZ, Ensight, and VTK formats. Pizza.py can pipe SPARTA dump files directly into the Raster3d and
RasMol visualization programs. Pizza.py has tools that do interactive 3d OpenGL visualization and one that
creates SVG images of dump file snapshots.

Additional Pizza.py tools may be added that allow visualization of surface and grid cell information as output by
SPARTA.

6.6 Library interface to SPARTA

As described in Section 2.4, SPARTA can be built as a library, so that it can be called by another code, used in a
coupled manner with other codes, or driven through a Python interface.

All of these methodologies use a C-style interface to SPARTA that is provided in the files src/library.cpp and
src/library.h. The functions therein have a C-style argument list, but contain C++ code you could write yourself in
a C++ application that was invoking SPARTA directly. The C++ code in the functions illustrates how to invoke
internal SPARTA operations. Note that SPARTA classes are defined within a SPARTA namespace
(SPARTA_NS) if you use them from another C++ application.

Library.cpp contains these 4 functions:

void sparta_open(int, char **, MPI_Comm, void **);
void sparta_close(void *);
void sparta_file(void *, char *);
char *sparta_command(void *, char *);

The sparta_open() function is used to initialize SPARTA, passing in a list of strings as if they were command-line
arguments when SPARTA is run in stand-alone mode from the command line, and a MPI communicator for
SPARTA to run under. It returns a ptr to the SPARTA object that is created, and which is used in subsequent
library calls. The sparta_open() function can be called multiple times, to create multiple instances of SPARTA.

SPARTA will run on the set of processors in the communicator. This means the calling code can run SPARTA on
all or a subset of processors. For example, a wrapper script might decide to alternate between SPARTA and
another code, allowing them both to run on all the processors. Or it might allocate half the processors to SPARTA
and half to the other code and run both codes simultaneously before syncing them up periodically. Or it might
instantiate multiple instances of SPARTA to perform different calculations.

The sparta_close() function is used to shut down an instance of SPARTA and free all its memory.

61

http://lammps.github.io/pizza
http://www.ensight.com

The sparta_file() and sparta_command() functions are used to pass a file or string to SPARTA as if it were an
input script or single command in an input script. Thus the calling code can read or generate a series of SPARTA
commands one line at a time and pass it thru the library interface to setup a problem and then run it, interleaving
the sparta_command() calls with other calls to extract information from SPARTA, perform its own operations, or
call another code's library.

Other useful functions are also included in library.cpp. For example:

void *sparta_extract_global(void *, char *)
void *sparta_extract_compute(void *, char *, int, int)
void *sparta_extract_variable(void *, char *, char *)

This can extract various global quantities from SPARTA as well as values calculated by a compute or variable.
See the library.cpp file and its associated header file library.h for details.

Other functions may be added to the library interface as needed to allow reading from or writing to internal
SPARTA data structures.

The key idea of the library interface is that you can write any functions you wish to define how your code talks to
SPARTA and add them to src/library.cpp and src/library.h, as well as to the Python interface. The routines you
add can in principle access or change any SPARTA data you wish. The examples/COUPLE and python
directories have example C++ and C and Python codes which show how a driver code can link to SPARTA as a
library, run SPARTA on a subset of processors, grab data from SPARTA, change it, and put it back into
SPARTA.

IMPORTANT NOTE: The examples/COUPLE dir has not been added to the distribution yet.

6.7 Coupling SPARTA to other codes

SPARTA is designed to allow it to be coupled to other codes. For example, a continuum finite element (FE)
simulation might use SPARTA grid cell quantities as boundary conditions on FE nodal points, compute a FE
solution, and return continuum flow conditions as boundary conditions for SPARTA to use.

SPARTA can be coupled to other codes in at least 3 ways. Each has advantages and disadvantages, which you'll
have to think about in the context of your application.

(1) Define a new fix command that calls the other code. In this scenario, SPARTA is the driver code. During its
timestepping, the fix is invoked, and can make library calls to the other code, which has been linked to SPARTA
as a library. See Section 8 of the documentation for info on how to add a new fix to SPARTA.

(2) Define a new SPARTA command that calls the other code. This is conceptually similar to method (1), but in
this case SPARTA and the other code are on a more equal footing. Note that now the other code is not called
during the timestepping of a SPARTA run, but between runs. The SPARTA input script can be used to alternate
SPARTA runs with calls to the other code, invoked via the new command. The run command facilitates this with
its every option, which makes it easy to run a few steps, invoke the command, run a few steps, invoke the
command, etc.

In this scenario, the other code can be called as a library, as in (1), or it could be a stand-alone code, invoked by a
system() call made by the command (assuming your parallel machine allows one or more processors to start up
another program). In the latter case the stand-alone code could communicate with SPARTA thru files that the
command writes and reads.

62

See Section_modify of the documentation for how to add a new command to SPARTA.

(3) Use SPARTA as a library called by another code. In this case the other code is the driver and calls SPARTA
as needed. Or a wrapper code could link and call both SPARTA and another code as libraries. Again, the run
command has options that allow it to be invoked with minimal overhead (no setup or clean-up) if you wish to do
multiple short runs, driven by another program.

Examples of driver codes that call SPARTA as a library are included in the examples/COUPLE directory of the
SPARTA distribution; see examples/COUPLE/README for more details.

IMPORTANT NOTE: The examples/COUPLE dir has not been added to the distribution yet.

Section 2.3 of the manual describes how to build SPARTA as a library. Once this is done, you can interface with
SPARTA either via C++, C, Fortran, or Python (or any other language that supports a vanilla C-like interface).
For example, from C++ you could create one (or more) "instances" of SPARTA, pass it an input script to process,
or execute individual commands, all by invoking the correct class methods in SPARTA. From C or Fortran you
can make function calls to do the same things. See Section_9 of the manual for a description of the Python
wrapper provided with SPARTA that operates through the SPARTA library interface.

The files src/library.cpp and library.h contain the C-style interface to SPARTA. See Section 6.6 of the manual for
a description of the interface and how to extend it for your needs.

Note that the sparta_open() function that creates an instance of SPARTA takes an MPI communicator as an
argument. This means that instance of SPARTA will run on the set of processors in the communicator. Thus the
calling code can run SPARTA on all or a subset of processors. For example, a wrapper script might decide to
alternate between SPARTA and another code, allowing them both to run on all the processors. Or it might
allocate half the processors to SPARTA and half to the other code and run both codes simultaneously before
syncing them up periodically. Or it might instantiate multiple instances of SPARTA to perform different
calculations.

6.8 Details of grid geometry in SPARTA

SPARTA overlays a grid over the simulation domain which is used to track particles and to co-locate particles in
the same grid cell for performing collision and chemistry operations. Surface elements are also assigned to grid
cells they intersect with, so that particle/surface collisions can be efficiently computed.

SPARTA uses a Cartesian hierarchical grid. Cartesian means that the faces of a grid cell, at any level of the
hierarchy, are aligned with the Cartesian xyz axes. I.e. each grid cell is an axis-aligned pallelpiped or rectangular
box.

The hierarchy of grid cells is defined for N levels, from 1 to N. The entire simulation box is a single parent grid
cell, conceptually at level 0. It is subdivided into a regular grid of Nx by Ny by Nz cells at level 1. "Regular"
means all the Nx*Ny*Nz sub-divided cells within any parent cell are the same size. Each of those cells can be a
child cell (no further sub-division) or it can be a parent cell which is further subdivided into Nx by Ny by Nz cells
at level 2. This can recurse to as many levels as desired. Different cells can stop recursing at different levels. The
Nx,Ny,Nz values for each level of the grid can be different, but they are the same for every grid cell at the same
level. The per-level Nx,Ny,Nz values are defined by the create_grid, read_grid, adapt_grid, or fix_adapt
commands.

As described below, each child cell is assigned an ID which encodes the cell's logical position within in the
hierarchical grid, as a 32-bit or 64-bit unsigned integer ID. The precision is set by the -DSPARTA_BIG or

63

-DSPARTA_SMALL or -DSPARTA_BIGBIG compiler switch, as described in Section 2.2. The number of grid
levels that can be used depends on this precision and the resolution of the grid at each level. For example, in a 3d
simulation, a level that is refined with a 2x2x2 sub-grid requires 4 bits of the ID. Thus a maximum of 8 levels can
be used for 32-bit IDs and 16 levels for 64-bit IDs.

This manner of defining a hierarchical grid allows for flexible grid cell refinement in any region of the simulation
domain. E.g. around a surface, or in a high-density region of the gas flow. Also note that a 3d oct-tree (quad-tree
in 2d) is a special case of the SPARTA hierarchical grid, where Nx = Ny = Nz = 2 is used at every level.

An example 2d hierarchical grid is shown in the diagram, for a circular surface object (in red) with the grid
refined on the upwind side of the object (flow from left to right). The first level coarse grid is 18x10. 2nd level
grid cells are defined in a subset of those cells with a 3x3 sub-division. A subset of the 2nd level cells contain 3rd
level grid cells via a further 3x3 sub-division.

In the rest of the SPARTA manual, the following terminology is used to refer to the cells of the hierarchical grid.
The flow region is the portion of the simulation domain that is "outside" any surface objects and is typically filled
with particles.

root cell = the overall simulation box•
parent cell = a grid cell that is sub-divided (the root cell is a parent cell)•
child cell = a grid cell that is not sub-divided further•
unsplit cell = a child cell not intersected by any surface elements•
cut cell = a child cell intersected by one or more surface elements, resulting in a single flow region•

64

split cell = a child cell intersected by two or more surface elements, resulting in two or more disjoint flow
regions

•

sub cell = one disjoint flow region portion of a split cell•

Note that in SPARTA, parent cells are only conceptual. They do not exist as individual entities or require
memory. Child cells store various attributes and are distributed across processors, so that each child cell is owned
by exactly one processor, as discussed below.

When surface objects are defined via the read_surf command, they intersect child cells. In this contex
"intersection" by a surface element means a geometric overlap between the area of the surface element and the
volume of the grid cell (or length of element and area of grid cell in 2d). Thus an intersection includes a surface
triangle that only touches a grid cell on its face, edge, or at its corner point. When intersected by one or more
surface elements, a child cell becomes one of 3 flavors: unsplit, cut, or split. A child cell not intersected by any
surface elements is an unsplit cell. It can be entirely in the flow region or entirely inside a surface object. If a child
cell is intersected so that it is partitioned into two contiguous volumes, one in the flow region, the other inside a
surface object, then it is a cut cell. This is the usual case. Note that either the flow volume or inside volume can be
of size zero, if the surface only "touches" the grid cell, i.e. the intersection is only on a face, edge, or corner point
of the grid cell. The left side of the diagram below is an example, where red represents the flow region.
Sometimes a child cell can be partitioned by surface elements so that more than one contiguous flow region is
created. Then it is a split cell. Additionally, each of the two or more contiguous flow regions is a sub cell of the
split cell. The right side of the diagram shows a split cell with 3 sub cells.

The union of (1) unsplit cells that are in the flow region (not entirely interior to a surface object) and (2) flow
region portions of cut cells and (3) sub cells is the entire flow region of the simulation domain. These are the only
kinds of child cells that store particles. Split cells and unsplit cells interior to surface objects have no particles.

Child cell IDs can be output in integer or string form by the dump grid command, using its id and idstr attributes.
The integer form can also be output by the compute property/grid.

Here is how a grid cell ID is computed by SPARTA, either for parent or child cells. Say the level 1 grid is a
10x10x20 sub-division (2000 cells) of the root cell (simulation box). The level 1 cells are numbered from 1 to
2000 with the x-dimension varying fastest, then y, and finally the z-dimension slowest. Consider the 376th level 1
cell. It would be the 6th cell in the x direction of the grid, 8th cell in y, and 4th cell in z. I.e. 376 = (z-1)*100 +
(y-1)*10 + (x-1) + 1. Now consider the case where level 2 cells use a 2x2x2 sub-division (8 cells) of level 1 cells
and consider the 4th level 2 cell within the 376th level 1 cell. This would be the 2nd cell in x, 2nd cell in y, and
1st cell in z. I.e. 4 = (z-1)*4 + (y-1)*2 + (x-1) + 1.

65

This level 2 cell could itself be a parent cell if it were further sub-divided, or a child cell if not. In either case its
ID is the same and is calcluated as follows. The rightmost 11 bits of the integer ID are encoded with 376. This is
because it requires 11 bits to represent 2000 cells (1 to 2000) at level 1. The next 4 bits are encoded with 4,
because it requires 4 bits to represent 8 cells (1 to 8) at level 2. Thus the level 2 cell ID in integer format is
4*2048 + 376 = 8568. In string format it would be 376-4, with dashes separating each of the levels. Either of
these formats (integer or string) can be specified as id or idstr for output of grid cell info with the dump grid
command; see its doc page for more details.

Note that a child cell has the same ID whether it is unsplit, cut, or split. Currently, sub cells of a split cell also
have the same ID, though that may change in the future.

The create_grid and balance and fix balance commands determine the assignment of child cells to processors. If a
child cell is assigned to a processor, that processor owns the cell whether it is an unsplit, cut, or split cell. It also
owns any sub cells that are part of a split cell.

Depending on which assignment options in these commands are used, the child cells assigned to each processor
will either be "clumped" or "dispersed".

Clumped means each processor's cells will be geometrically compact. Dispersed means the processor's cells will
be geometrically dispersed across the simulation domain and so they cannot be enclosed in a small bounding box.

An example of a clumped assignment is shown in this zoom-in of a 2d hierarchical grid with 5 levels, refined
around a tilted ellipsoidal surface object (outlined in pink). One processor owns the grid cells colored orange. A
compact bounding rectangle can be drawn around the orange cells which will contain only a few grid cells owned
by other processors. By contrast a dispersed assignment could scatter orange grid cells throughout the entire
simulation domain.

It is important to understand the difference between the two kinds of assignments and the effects they can have on
performance of a simulation. For example the create_grid and read_grid commands may produce dispersed
assignments, depending on the options used, which can be converted to a clumped assignment by the
balance_grid command.

Simulations typically run faster with clumped grid cell assignments. This is because the cost of communicating
particles is reduced if particles that move to a neighboring grid cell often stay on-processor. Similarly, some
stages of simulation setup may run faster with a clumped assignment. Examples are the finding of nearby ghost
grid cells and the computation of surface element intersections with grid cells. The latter operation is invoked
when the read_surf command is used.

If the spatial distribution of particles is highly irregular and/or dynamically changing, or if the computational
work per grid cell is otherwise highly imbalanced, a clumped assignment of grid cells to processors may not lead
to optimal balancing. In these scenarios a dispersed assignment of grid cells to processsors may run faster even

66

with the overhead of increased particle communication. This is because randomly assigning grid cells to
processors can balance the computational load in a statistical sense.

6.9 Details of surfaces in SPARTA

A SPARTA simulation can define one or more surface objects, each of which are read in via the read_surf. For 2d
simulations a surface object is a collection of connected line segments. For 3d simulations it is a collection of
connected triangles. The outward normal of lines or triangles, as defined in the surface file, points into the flow
region of the simulation box which is typically filled with particles. Depending on the orientation, surface objects
can thus be obstacles that particles flow around, or they can represent the outer boundary of an irregular shaped
region which particles are inside of.

See the read_surf doc page for a discussion of these topics:

Requirement that a surface object be "watertight", so that particles do not enter inside the surface or
escape it if used as an outer boundary.

•

Surface objects (one per file) that contain more than one physical object, e.g. two or more spheres in a
single file.

•

Use of geometric transformations (translation, rotation, scaling, inversion) to convert the surface object in
a file into different forms for use in different simulations.

•

Clipping a surface object to the simulation box to effectively use a portion of the object in a simulation,
e.g. a half sphere instead of a full sphere.

•

The kinds of surface objects that are illegal, including infinitely thin objects, ones with duplicate points,
or multiple surface or physical objects that touch or overlap.

•

The read_surf command assigns an ID to the surface object in a file. This can be used to reference the surface
elements in the object in other commands. For example, every surface object must have a collision model
assigned to it so that particle bounces off the surface can be computed. This is done via the surf_modify and
surf_collide commands.

As described in the previous Section 6.8, SPARTA overlays a grid over the simulation domain to track particles.
Surface elements are also assigned to grid cells they intersect with, so that particle/surface collisions can be
efficiently computed. Typically a grid cell size larger than the surface elements that intersect it may not desirable
since it means flow around the surface object will not be well resolved. The size of the smallest surface element in
the system is printed when the surface file is read. Note that if the surface object is clipped to the simulation box,
small lines or triangles can result near the box boundary due to the clipping operation.

The maximum number of surface elements that can intersect a single child grid cell is set by the global surfmax
command. The default limit is 100. The actual maximum number in any grid cell is also printed when the surface
file is read. Values this large or larger may cause particle moves to become expensive, since each time a particle
moves within that grid cell, possible collisions with all its overlapping surface elements must be computed.

6.10 Restarting a simulation

There are two ways to continue a long SPARTA simulation. Multiple run commands can be used in the same
input script. Each run will continue from where the previous run left off. Or binary restart files can be saved to
disk using the restart command. At a later time, these binary files can be read via a read_restart command in a
new script.

67

Here is an example of a script that reads a binary restart file and then issues a new run command to continue
where the previous run left off. It illustrates what settings must be made in the new script. Details are discussed in
the documentation for the read_restart and write_restart commands.

Look at the in.collide input script provided in the bench directory of the SPARTA distribution to see the original
script that this script is based on. If that script had the line

restart 50 tmp.restart

added to it, it would produce 2 binary restart files (tmp.restart.50 and tmp.restart.100) as it ran for 130 steps, one
at step 50, and one at step 100.

This script could be used to read the first restart file and re-run the last 80 timesteps:

read_restart tmp.restart.50

seed 12345
collide vss air ar.vss

stats 10
compute temp temp
stats_style step cpu np nattempt ncoll c_temp

timestep 7.00E-9
run 80

Note that the following commands do not need to be repeated because their settings are included in the restart file:
dimension, global, boundary, create_box, create_grid, species, mixture. However these commands do need to be
used, since their settings are not in the restart file: seed, collide, compute, fix, stats_style, timestep. The
read_restart doc page gives details.

If you actually use this script to perform a restarted run, you will notice that the statistics output does not match
exactly. On step 50, the collision counts are 0 in the restarted run, because the line is printed before the restarted
simulation begins. The collision counts in subsequent steps are similar but not identical. This is because new
random numbers are used for collisions in the restarted run. This affects all the randomized operations in a
simulation, so in general you should only expect a restarted run to be statistically similar to the original run.

6.11 Using the ambipolar approximation

The ambipolar approximation is a computationally efficient way to model low-density plasmas which contain
positively-charged ions and negatively-charged electrons. In this model, electrons are not free particles which
move independently. This would require a simulation with a very small timestep due to electon's small mass and
high speed (1000x that of an ion or neutral particle).

Instead each ambipolar electron is assumed to stay "close" to its parent ion, so that the plasma gas appears
macroscopically neutral. Each pair of particles thus moves together through the simulation domain, as if they
were a single particle, which is how they are stored within SPARTA. This means a normal timestep can be used.

There are two stages during a timestep when the coupled particles are broken apart and treated as an independent
ion and electron.

The first is during gas-phase collisions and chemistry. The ionized ambipolar particles in a grid cell are each split
into two particles (ion and electron) and each can participate in two-body collisions with any other particle in the

68

cell. Electron/electron collisions are actually not performed, but are tallied in the overall collision count (if using a
collision mixture with a single group, not when using multiple groups). If gas-phase chemistry is turned on,
reactions involving ions and electrons can be specified, which include dissociation, ionization, exchange, and
recombination reactions. At the end of the collision/chemsitry operations for the grid cell, there is still a
one-to-one pairing between ambipolar ions and electrons. Each pair is recombined into a single particle.

The second is during collisions with surface (or the boundaries of the simulation box) if a surface reaction model
is defined for the surface element or boundary. Just as with gas-phase chemistry, surface reactions involving
ambipolar species can be defined. For example, an ambipolar ion/electron pair can re-combine into a neutral
species during the collision.

Here are the SPARTA commands you can use to run a simulation using the ambipolar approximation. See the
input scripts in examples/ambi for an example.

Note that you will likely need to use two (or more mixtures) as arguments to various commands, one which
includes the ambipolar electron species, and one which does not. Example mixture commands for doing this are
shown below.

Use the fix ambipolar command to specify which species is the ambipolar electron and what (multiple) species are
ambipolar ions. This is required for all the other options listed here to work. The fix defines two custom
per-particle attributes, an integer vector called "ionambi" which stores a 1 for a particle if it is an ambipolar ion,
and a 0 otherwise. And a floating-point array called "velambi" which stores a 3-vector with the velocity of the
associated electron for each ambipolar ion or zeroes otherwise. Note that no particles should ever exist in the
simulation with a species matching ambipolar electrons. Such particles are only generated (and destroyed)
internally, as described above.

Use the collide_modify ambipolar yes command if you want to perform gas-phase collisions using the ambipolar
model. This is not required. If you do this, you may also want to specify a mixture for the collide command which
has two or more groups. If this is the case, the ambipolar electron species must be in a group by itself. The other
group(s) can contain any combination of ion or neutral species. Note that putting the ambipolar electron species in
its own group should improve the efficiency of the code due to the large disparity in electron versus ion/neutral
velocities.

If you want to perform gas-phase chemistry for reactions involving ambipolar ions and electrons, use the react
command with an input file of reactions that include the ambipolar electron and ion species defined by the fix
ambipolar commmand. See the react command doc page for info the syntax required for ambipolar reactions.
Their reactants and products must be listed in specific order.

When creating particles, either by the create_particles or fix emit command variants, do NOT use a mixture that
includes the ambipolar electron species. If you do this, you will create "free" electrons which are not coupled to
an ambipolar ion. You can include ambipolar ions in the mixture. This will create ambipolar ions along with their
associated electron. The electron will be assigned a velocity consistent with its mass and the temperature of the
created particles. You can use the mixture copy and mixture delete commands to create a mixture that excludes
only the ambipolar electron species, e.g.

mixture all copy noElectron
mixture noElectron delete e

If you want ambipolar ions to re-combine with their electrons when they collide with surfaces, use the surf_react
command with an input file of surface reactions that includes recombination reactions like:

N+ + e -> N

69

See the surf_react doc page for syntax details. A sample surface reaction data file is provided in data/air.surf. You
assign the surface reaction model to surface or the simulation box boundaries via the surf_modify and
bound_modify commands.

For diagnositics and output, you can use the compute count and dump particle commands. The compute count
command generate counts of individual species, entire mixtures, and groups within mixtures. For example these
commands will include counts of ambipolar ions in statistical output:

compute myCount O+ N+ NO+ e
stats_style step nsreact nsreactave cpu np c_myCount

Note that the count for species "e" = ambipolar electrons should alwas be zero, since those particles only exist
during gas and surface collisions. The stats_style nsreact and nsreactave keywords print tallies of surface
reactions taking place.

The dump particle command can output the custom particle attributes defined by the fix ambipolar command. E.g.
this command

dump 1 particle 1000 tmp.dump id type x y z p_ionambi p_velambi[2]

will output the ionambi flag = 1 for ambipolar ions, along with the vy of their associated ambipolar electrons.

The fix ambipolar ambiploar.html doc page explains how to restart ambipolar simulations where the fix is used.

6.12 Using multiple vibrational energy levels

DSMC models for collisions between one or more polyatomic species can include the effect of multiple discrete
vibrational levels, where a collision transfers vibrational energy not just between the two particles in aggregate
but between the various levels defined for each particle species.

This kind of model can be enabled in SPARTA using the following commands:

species ... vibfile ...•
collide_modify vibrate discrete•
fix vibmode•
dump particle p_vibmode•

The species command with its vibfile option allows a separate file with per-species vibrational information to be
read. See data/air.species.vib for an example of such a file.

Only species with 4,6,8 vibrational degrees of freedom, as defined in the species file read by the species
command, need to be listed in the vibfile. These species have N modes, where N = degrees of freedom / 2. For
each mode, a vibrational temperature, relaxation number, and degeneracy is defined in the vibfile. These
quantities are used in the energy exchange formulas for each collision.

The collide_modify vibrate discrete command is used to enable the discrete model. Other allowed settings are
none and smooth. The former turns off vibrational energy effects altogether. The latter uses a single continuous
value to represent vibrational energy; no per-mode information is used.

The fix vibmode command is used to allocate per-particle storage for the population of levels appropriate to the
particle's species. This will be from 1 to 4 values for each species. Note that this command must be used before
particles are created via the create_particles command to allow the level populations for new particles to be set

70

appropriately. The fix vibmode command doc page has more details.

The dump particle command can output the custom particle attributes defined by the fix vibmode command. E.g.
this command

dump 1 particle 1000 tmp.dump id type x y z evib p_vibmode[1] p_vibmode[2] p_vibmode[3]

will output for each particle evib = total vibrational energy (summed across all levels), and the population counts
for the first 3 vibrational energy levels. The vibmode count will be 0 for vibrational levels that do not exist for
particles of a particular species.

The read_restart doc page explains how to restart simulations where a fix like fix vibmode has been used to store
extra per-particle properties.

6.13 Surface elements: explicit, implicit, distributed

SPARTA can work with two kinds of surface elements: explicit and implicit. Explicit surfaces are lines (2d) or
triangles (3d) defined in surface data files read by the read_surf command. An individual element can be any size;
a single surface element can intersect many grid cells. Implicit surfaces are lines (2d) or triangles (3d) defined by
grid corner point data files read by the read_isurf command. The corner point values define lines or triangles that
are wholly contained with single grid cells.

Note that you cannot mix explicit and implicit surfaces in the same simulation.

The data and attributes of explicit surface elements can be stored in one of two ways. The default is for each
processor to store a copy of all the elements. Memory-wise, this is fine for most models. The other option is
distributed, where each processor only stores copies of surface elements assigned to grid cells it owns or has a
ghost copy of. For models with huge numbers of surface elements, distributing them will use much less memory
per processor. Note that a surface element requires about 150 bytes of storage, so storing a million requires about
150 MBytes.

Implicit surfaces are always stored in a distributed fashion. Each processor only stores a copy of surface elements
assigned to grid cells it owns or has a ghost copy of. Note that 3d implicit surfs are not yet fully implemented.
Specifically, the read_isurf command will not yet read and create them.

The global surfs command is used to specify the use of explicit versus implicit, and distributed versus
non-distributed surface elements.

Unless noted, the following surface-related commands work with either explict or implicit surfaces, whether they
are distributed or not. For large data sets, the read and write surf and isurf commands have options to use multiple
files and/or operate in parallel which can reduce I/O times.

adapt_grid•
compute_isurf/grid # for implicit surfs•
compute_surf # for explicit surfs•
dump surf•
dump image•
fix adapt/grid•
fix emit/surf•
group surf•
read_isurf # for implicit surfs•

71

read_surf # for explicit surfs•
surf_modify•
write_isurf # for implicit surfs•
write_surf•

These command do not yet support distributed surfaces:

move_surf•
fix move/surf•
remove_surf•

6.14 Implicit surface ablation

The implicit surfaces described in the previous section can be used to perform ablation simulations, where the set
of implicit surface elements evolve over time to model a receding surface. These are the relevant commands:

global surfs implicit•
read isurf•
fix ablate•
compute isurf/grid•
compute react/isurf/grid•
fix ave/grid•
write isurf•
write_surf•

The read_isurf command takes a binary file as an argument which contains a pixelated (2d) or voxelated (3d)
representation of the surface (e.g. a porous heat shield material). It reads the file and assigns the pixel/voxel
values to corner points of a region of the SPARTA grid.

The read_isurf command also takes the ID of a fix ablate command as an argument. This fix is invoked to perform
a Marching Squares (2d) or Marching Cubes (3d) algorithm to convert the corner point values to a set of line
segments (2d) or triangles (3d) each of which is wholly contained in a grid cell. It also stores the per grid cell
corner point values.

If the Nevery argument of the fix ablate command is 0, ablation is never performed, the implicit surfaces are
static. If it is non-zero, an ablation operation is performed every Nevery steps. A per-grid cell value is used to
decrement the corner point values in each grid cell. The values can be (1) from a compute such as compute
isurf/grid which tallies statistics about gas particle collisions with surfaces within each grid cell. Or compute
react/isurf/grid which tallies the number of surface reactions that take place. Or values can be (2) from a fix such
as fix ave/grid which time averages these statistics over many timesteps. Or they can be (3) generated randomly,
which is useful for debugging.

The decrement of grid corner point values is done in a manner that models recession of the surface elements
within in each grid cell. All the current implicit surface elements are then discarded, and new ones are generated
from the new corner point values via the Marching Squares or Marching Cubes algorithm.

IMPORTANT NOTE: Ideally these algorithms should preserve the gas flow volume inferred by the previous
surfaces and only add to it with the new surfaces. However there are a few cases for the 3d Marching Cubes
algorithm where the gas flow volume is not strictly preserved. This can trap existing particles inside the new
surfaces. Currently SPARTA checks for this condition and deletes the trapped particles. In the future, we plan to
modify the standard Marching Cubes algorithm to prevent this from happening. In our testing, the fraction of

72

trapped particles in an ablation operation is tiny (around 0.005% or 5 in 100000). The number of deleted particles
can be monitored as an output option by the fix ablate command.

The write_isurf command can be used to periodically write out a pixelated/voxelated file of corner point values,
in the same format that the read_isurf command reads. Note that after ablation, corner point values are typically
no longer integers, but floating point values. The read_isurf and write_isurf commands have options to work with
both kinds of files. The write_surf command can also output implicit surface elements for visualization by tools
such as ParaView which can read SPARTA surface element files after suitable post-processing. See the Section
tools paraview doc page for more details.

6.15 Transparent surface elements

Transparent surfaces are useful for tallying flow statistics. Particles pass through them unaffected. However the
flux of particles through those surface elements can be tallied and output.

Transparent surfaces are treated differently than regular surfaces. They do not need to be watertight. E.g. you can
define a set of line segments that form a straight (or curved) line in 2d. Or a set of triangle that form a plane (or
curved surface) in 3d. You can define multiple such surfaces, e.g. multiple disjoint planes, and tally flow statistics
through each of them. To tally or sum the statistics separately, you may want to assign the triangles in each plane
to a different surface group via the read_surf group or group surf commands.

Note that for purposes of collisions, transparent surface elements are one-sided. A collision is only tallied for
particles passing through the outward face of the element. If you want to tally particles passing through in both
directions, then define 2 transparent surfaces, with opposite orientation. Again, you may want to put the 2 surfaces
in separate groups.

There also should be no restriction on transparent surfaces intersecting each other or intersecting regular surfaces.
Though there may be some corner cases we haven't thought about or tested.

These are the relevant commands. See their doc pages for details:

read_surf transparent•
surf_collide transparent•
compute surf•

The read_surf command with its transparent keyword is used to flag all the read-in surface elements as
transparent. This means they must be in a file separate from regular non-transparent elements.

The surf_collide command must be used with its transparent model and assigned to all transparent surface
elements via the surf_modify command.

The compute_surf command can be used to tally the count, mass flux, and energy flux of particles that pass
through transparent surface elements. These quantities can then be time averaged via the fix ave/surf command or
output via the dump surf command in the usual ways, as described in Section 6.4.

The examples/circle/in.circle.transparent script shows how to use these commands when modeling flow around a
2d circle. Two additional transparent line segments are placed in front of the circle to tally particle count and
kinetic energy flux in both directions in front of the object. These are defined in the data.plane1 and data.plane2
files. The resulting tallies are output with the stats_style command. They could also be output with a dump surf
command for more resolution if the 2 lines were each defined as multiple line segments.

73

6.16 Visualizing SPARTA output with ParaView

The sparta/tools/paraview directory contains two Python programs that can be used to convert SPARTA surface
and grid data to ParaView .pvd format for visualization with ParaView:

surf2paraview.py
grid2paraview.py

Note that you must have ParaView installed on your system to use these scripts. Installation and usage
instructions follow.

These tools were written by Tom Otahal (Sandia), who can be contacted at tjotaha at sandia.gov.

Important

The ParaView pvpython interpreter must be used to run these Python scripts. Using a standard Python interpreter
will not work, since the scripts will not have access to the required ParaView Python modules and libraries.

Important

(1) Getting Started

Download and install ParaView at Kitware ParaView

Binary installers are available for Linux, MacOS, and Windows. Locate the pvpython binary in your ParaView
installation.

On Linux:

pvpython is in the bin/ directory of the extracted tar.gz file

On MacOS:

pvpython is in /Applications/paraview.app/Contents/bin/

On Windows:

pvpython is in C:\Program Files (x86)\ParaView 5.6.0\bin

(2) Using surf2paraview.py

The surf2paraview.py program converts 3D SPARTA surface triangulation files and 2D SPARTA closed polygon
files into ParaView .pvd format. Additionally, the program can optionally read one or more SPARTA surface
dump files and associate the calculated results with the surface geometry over time.

The program has two required arguments:

pvpython surf2paraview.py data.mir mir_surf

The first argument is the file name of a SPARTA surf file containing a 3d triangulation of an objects surface, or a
2d enclosed polygon of line segments. The second argument is the name of the resulting ParaView output .pvd

74

https://www.paraview.org

file. The above command line will produce a file called mir_surf.pvd and a directory called mir_surf/. The
mir_surf/ directory contains a ParaView .vtu file with geometry information and is referred to by the mir_surf.pvd
file. Start ParaView and open the file mir_surf.pvd to visualize the surface.

The program has an optional argument to associate time result data with the surface elements:

pvpython surf2paraview.py data.mir mir_surf -r ../parent/mir/tmp_surf.*

The -r (or --result) option is followed by a list of file names with full or relative paths to SPARTA surf dump
files. The files can be over different time steps and from different processors at the same time step. The script will
organize the result files so that ParaView can play a smooth animation over all time steps for the stored variables
in the file. The example above uses a wild card character in the file name to gather all of the tmp_surf.* files
stored in the directory. Wild card characters can only be used in the file name part of the path and can be given for
multiple paths.

NOTE: SPARTA 2d enclosed polygons will be 2d outlines in ParaView. This means that any grid cells inside of
the polygon will be visible in ParaView. To obscure the inside of the enclosed polygon, select a Delaunay 2D
filter from the ParaView menu.

 Filters->Alphabetical->Delaunay 2D

This will triangulate the interior of the polygon and obscure interior grid cells from view.

The -e (or --exodus) option will output the contents of the *.pvd and output directory in Exodus 2 output format as
a single file:

pvpython surf2paraview.py data.mir mir_surf -r ../parent/mir/tmp_surf.* --exodus

This will produce an Exodus 2 file mir_surf.ex2, containing the same content as mir_surf.pvd and mir_surf/. The
.pvd format output is not written when Exodus 2 output is requested.

(3) Using grid2paraview.py

The grid2paraview.py program converts a text file description of a 2D or 3D SPARTA mesh into a ParaView .pvd
file. Additionally, the program can optionally read one or more SPARTA grid dump files and associate the
calculated results with the grid cells over time.

The program has two required arguments:

pvpython grid2paraview.py mir.txt mir_grid

The first argument is a text file containing a description of the SPARTA grid. The description uses commands
found in the SPARTA input deck. These commands are dimension, create_box, and create_grid or read_grid.
The file can also contain "slice" commands which will define slice planes through the 3d grid and output 3d data
for each slice plane (crinkle cut). The file can also contain comment lines with start with a "#" character.

The dimension and create_box command have exactly the same syntax as corresponding SPARTA input script
commands. Both of these commands must be used.

The grid itself can be defined by either a create_grid or read_grid command, one of which must be used. The
create_grid command is similar to the SPARTA input script command with the same name, but it only allows for
use of the "level" keyword. The other keywords that specify processor assignments for cells are not allowed. The
read_grid command has the same syntax as the corresponding SPARTA input script command, and reads a

75

SPARTA parent grid file, which can define a hierarchical grid with multiple levels of refinement.

One or more slice commands are optional. Each defines a 2d plane in the following manner

slice Nx Ny Nz Px Py Pz

where (Nx,Ny,Nz) is the plane normal (need not be normalized) and (Px,Py,Pz) is a point on the plane. Note that
the plane can be at any orientation. ParaView will perform a good interpolation from the 3d grid cells to the 2d
plane.

Each command will output a *.pvd file with the plane normal encoded in the *.pvd file-name.

As an example, the mir.txt file specified above could contain the following grid description:

 dimension 3
 create_box -15.0 30.0 -20.0 15.0 -20.0 20.0
 create_grid 100 100 100 level 2 * * * 2 2 2
 slice 1 0 0 0.0 0.0 0.0
 slice 0 1 0 0.0 0.0 0.0

The second argument for the grid2paraview command gives the name of the resulting .pvd file. The above
command line will produce a file called mir_grid.pvd and a directory called mir_grid/. The mir_grid/ directory
contains all the ParaView .vtu files used to describe the grid cell geometry. The mir_grid.pvd references the
mir_grid/ directory. Open mir_grid.pvd with ParaView to view the grid.

The program has an optional argument to associate time result data with the grid cells:

pvpython grid2paraview.py mir.txt mir_grid -r ../parent/mir/tmp_flow.*

The -r (or --result) option is followed by a list of file names with full or relative paths to SPARTA grid dump
files. This option operates like the -r option in the surf2paraview.py program.

The grid description given in the *.txt file must match the data given in the grid flow files. The grid flow files
must also contain a column that gives the SPARTA encoded integer id for the cell.

For large grids (greater than 100x100x100), the time to write out the .pvd file and data directory can be lengthy.
For this reason, the grid2paraview.py command has three additional options which can break the grid into smaller
chunks at the top-most level of the grid. Each chunk will be written out as a separate .vtu file in the named sub
directory the .pvd file refers to.

These additional options are:

-x (or --xchunk, default 100)
-y (or --ychunk, default 100)
-z (or --zchunk, default 100)

The program will launch a separate thread of computation for each grid chunk. On workstations with many cores
and sufficient memory, using small chunks (of about 1 million cells each) can greatly speed up output time. For
2d grids, the -zc option is ignored.

NOTE: On Windows platforms, the grid blocking will always be executed serially. This is due to how the
multiprocessing module is implemented on Windows, which prohibits multiple instances of pvpython from
starting independently.

76

(4) pvbatch for Large SPARTA Grids

When SPARTA grid output becomes large, the processing time required for grid2paraview.py can be long on a
single node even with multi-processing. If more than one compute node is available (HPC environment),
grid2paraview.py can be run with MPI using ParaView's pvbatch program. The pvbatch program is normally
located in the same directory as pvpython, along with the mpiexec program that works with ParaView. In some
environments, ParaView may have been compiled from source with a particular version of MPI, in which case the
appropriate mpiexec program will need to be used.

From the mir.txt example in section (3), to run grid2paraview.py using pvbatch, use the following command line.

mpiexec -np 256 pvbatch -sym grid2paraview.py mir.txt mir_grid -r ../parent/mir/tmp_flow.*

This command will run grid2paraview.py on 256 MPI ranks and produce the same outputs as the pvpython
version. Using 256 MPI ranks will be faster than multi-processing with threads on a single compute node. Notice
the "-sym" argument to pvbatch, which tells pvbatch to run in symmetric MPI mode. This argument is required.

(5) Catalyst for Large SPARTA Grids

There is an option in grid2paraview.py to execute a ParaView Catalyst Python script that has been exported from
the ParaView GUI. For more details on Catalyst, please see the Catalyst user guide, located here.

Kitware ParaView Catalyst in-situ

The Catalyst script will generate images or data extracts for each time-step. This will avoid having to run
ParaView as a separate step to generate visualizations. The ideal work-flow is to run the ParaView GUI on a
much smaller grid version to setup the visualization and export the Catalyst script. Then, run grid2paraview.py on
the larger SPARTA grid output to generate images. From the mir.txt example, to run grid2paraview.py using
pvbatch and Catalyst, use the following command line (catalyst.py was exported from the ParaView GUI).

mpiexec -np 32 pvbatch -sym grid2paraview.py mir.txt mir_grid -r -c catalyst.py ../parent/mir/tmp_flow.*

This will generate images or data extracts, depending on how catalyst.py was setup in the ParaView GUI. The
grid2paraview.py script will not generate ParaView grid geometry when the "-c" option is used. Note that
grid2paraview.py will assume that the grid input name is "mir_grid.pvd" in catalyst.py, since "mir_grid" is given
as the output directory. If these two names do not match, either edit your catalyst script or change the output
directory name on the command line to match what your script expects. The output directory is not created when
-c option is used.

(6) Post-processing large refined SPARTA output grids

When SPARTA grids contain a large amount of grid refinement concentrated in small areas of the grid, the tool
grid2paraview.py tends to run out of memory because it depends on a static distribution of cells to processors in
terms of grid chunks defined at the top level of the grid. To overcome this memory issue, two new ParaView tools
were developed:

sort_sparta_grid_file.py and grid2paraview_cells.py

The program sort_sparta_grid_file.py takes as input a SPARTA grid file and uses the parallel bucket sort
algorithm to sort the grid cells into the same number of files as MPI ranks used to run the program.

mpiexec -np 4 pvbatch -sym sort_sparta_grid_file.py data.grid

77

https://www.paraview.org/in-situ/

The program must be run using the ParaView pvbatch program with the -sym argument. The above command line
will produce 4 output files containing SPARTA grid dashed ids of cells located in the same area of the grid. The
output file names are based on the name of the *.grid file used as input (data.grid in this case). The output files
will be named as shown below.

data_sort_bucket_rank_0.txt
data_sort_bucket_rank_1.txt
data_sort_bucket_rank_2.txt
data_sort_bucket_rank_3.txt

The program grid2paraview_cells.py takes similar inputs as the grid2paraview.py program described in section
(3), and produces the same ParaView VTU file output and PVD file output.

mpiexec -np 4 pvbatch -sym grid2paraview_cells.py grid.txt output -rf flow_files.txt --float --variables id f_1[5] f_1[7]

The program must be run using the ParaView pvbatch program with the -sym argument. The above command line
will produce an output.pvd file and a directory name output/ containing the ParaView VTU file data. The grid.txt
file must contain a read_grid statement with the path to a SPARTA grid cell output file, and is otherwise the same
as the grid2paraview.py version. The option --float outputs float precision numbers to the VTU files to save
memory (default is double precision). The --variables option limits the output arrays to the names given on the
command line (default is all variable names found in the flow files given by the -rf or -r options).

The grid2paraview_cells.py program will look for *_sort_bucket_rank_?.txt files produced by the
sort_sparta_grid_file.py program. The matching will depend on the number of MPI ranks that
grid2paraview_cells.py is run on and the name of the output directory given to grid2paraview_cells.py. If
matching files are found, these will be used as input on each MPI rank. If no match is found,
grid2paraview_cells.py will run sort_sparta_grid_file.py to produce sorted output files for each rank. The
programs are decoupled in this way to allow faster grid2paraview_cells.py runs once a set of sorted files has been
generated by sort_sparta_grid_file.py.

6.17 Custom per-particle, per-grid, per-surf attributes

Particles, grid cells, and surface elements can have custom attributes which store either single or multiple values
per particle, per grid cell, or per surface element. If a single value is stored, the attribute is referred to as a custom
per-particle, per-grid, or per-surf vector. If multiple values are stored, the attribute is referred to as a custom
per-particle, per-grid, or per-surf array (an array can have a single column and thus a single value per entity).
Each custom attribute has a name, which allows them to be specified in input scripts as arguments to various
commands. The values each attricute stores can be either integer or floating point numbers.

Here are lists of current commands (as of August 2023) which use custom attributes in various ways:

Per-particle custom attributes:

compute reduce - reduce a per-particle attribute to a scalar value•
custom - set the values of a per-particle attribute and optionally create it•
dump particle - output per-particle attributes to a dump file•
fix ambipolar - use a per-particle vector and array for ambipolar quantities•
variable - use a per-particle attribute in a particle-style variable formula•

Per-grid custom attributes:

compute reduce - reduce a per-grid attribute to a scalar value•

78

custom - set the values of a per-grid attribute and optionally create it•
dump grid - output per-grid attributes to a dump file•
fix ave/grid - time-average a per-grid attribute•
read_grid - define and initialize per-grid attributes•
surf_react implicit - use per-grid vectors and an array to store chemical state (not yet released in public
SPARTA)

•

variable - use a per-grid attribute in a grid-style variable formula•
write_grid - write per-grid attributes to a grid data file•

Per-surf custom attributes:

compute reduce - reduce a per-surf attribute to a scalar value•
custom - set the values of a per-surf attribute and optionally create it•
dump surf - output per-surf attributes to a dump file•
fix ave/surf - time-average a per-surf attribute•
fix surf/temp - use a per-surf vector for temperature•
read_surf - define and initialize per-surf attributes•
surf_collide - use a per-surf attribute as temperature for particle/surf collisions•
surf_react adsorb - use per-surf vectors and an array to store chemical state•
variable - use a per-surf attribute in a surf-style variable formula•
write_surf - write per-surf attributes to a surf data file•

Per-surf custom attributes can be defined for explicit or explicit/distributed surface elements, as set by the global
surfs comand. But they cannot be used for implicit surface elements. Conceptually, implicit surfaces are defined
on a per-grid cell basis, so per-grid custom attributes can be used instead for attributes of those implicit surfaces.

Note that in some cases the name for a custom attribute is specified by the user, e.g. for the read_grid or read_surf
commands. In other cases, a command defines the name for the attributes and documents the name(s) it uses, e.g.
for the fix ambipolar or surf_react adsorb commands.

Also note that custom attributes can be static or dynamic quantities. For example, the read_surf command can be
used to define a static temperature for each surface element it reads, stored as a custom per-surf vector. By
contrast, the fix surf/temp command can be used to define a dynamic temperature for each surface element which
is calculated once every N steps from the energy flux which colliding particles impart to each surface element,
also stored in a custom per-surf vector.

In both cases, the custom per-surf vector can be passed to the surf_collide diffuse command to each timestep
when particle/surface element collisions take place.

Another use of dynamic custom attributes is by the fix ambipolar and surf_react adsorb commands. The former
stores the ambipolar state of each particle in per-particle attributes. The latter stores the chemical state of each
surface element in per-surf attributes. These will vary over the course of a simulation, and their status can be
monitored with the various output commands listed above.

6.18 Variable timestep simulations

As an alternative to utilization of a user-provided constant timestep, the variable timestep option enables
SPARTA to compute global timesteps based on the current state of the physical processes being modeled. The
timestep is global in the sense that all cells advance their particles in time using the same timestep value. The
timestep is adaptive in the sense that the global timestep can be recalculated periodically throughout the
simulation to account for flow state changes. Examples of situations where a variable timestep would be desired

79

are problems with highly varying density or velocity throughout the domain and transient problems where the
optimal timestep changes throughout the simulation.

The global, variable timestep is computed at a user-specified frequency using cell-based timesteps that are
calculated using cell mean collision and particle transit times. These cell-based timesteps are only used to
compute the global timestep and are not used to advance the solution locally. The benefit of the global timestep
calculation is that it will automatically reduce the timestep if the intial value is too large, leading to higher
accuracy, and it will automatically increase the timestep if the initial value is too small, speeding up the
simulation. The overhead of using the variable timestep option is the computational time involved in computing
the cell-based time quantities and performing parallel reductions over the grid to construct the global minimum
and average cell timesteps needed for the global timestep calculation. For scenarios where ensembles of similar
problems are being run, one strategy to mitigate this cost is to determine an optimal timestep using the variable
timestep option for the first run and then to utilize this timestep as a user-specified value for the subsequent runs.

The compute dt/grid command is used to calculate the cell-based timesteps, and the fix dt/reset command uses
this data to calculate the global timestep. An internal time variable has been added to SPARTA to track elapsed
simulation time, and this time variable as well as the current timestep can be output using the time and dt
keywords in the stats_style command. These time and dt values are also included in the read_restart and write
restart commands.

80

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

7. Example problems

The SPARTA distribution includes an examples sub-directory with several sample problems. Each problem is in a
sub-directory of its own. They are all small problems that run quickly, requiring at most a couple of minutes to
run on a desktop machine. Many are 2d so that they run more quickly and can be easily visualized. Each problem
has an input script (in.*) and produces a log file (log.*) when it runs. The data files they use for chemical species
or reaction parameters are copied from the data directory so the problems are self-contained.

Sample log file outputs on different machines and different numbers of processors are included in the directories
to compare your answers to. E.g. a log file like log.free.date.foo.P means it ran on P processors of machine "foo",
using the dated SPARTA version.

If the "dump image" lines in each script are uncommented, a series of image snapshots will be produced.
Animations of several of the examples can be viewed on the Movies section of the SPARTA WWW Site.

These are the sample problems in the examples sub-directories. See the examples/README file for more details.

chem = chemistry in a 3d box•
circle = 2d flow around a circular object•
collide = collisional motion in a 3d box•
free = free molecular motion in a 3d box•
sphere = 3d flow around a sphere•
spiky = 2d flow around a spiky circle•
step = 2d flow around a staircase of steps•

Here is how you might run and visualize one of the sample problems:

cd free
cp ../../src/spa_g++ . # copy SPARTA executable to this dir
spa_g++ <in.free # run the problem

Running the simulation produces the file log.sparta and optionall image.*.jpg. If you have the freely available
ImageMagick toolkit on your machine, you can run its "convert" command to create an animated GIF, and
visualize it from the FireFox browser as follows:

convert image*ppm movie.gif
firefox ./movie.gif

A similar command should work with other browsers. Or you can select "Open File" under the File menu of your
browser and load the animated GIF file directly.

81

https://sparta.github.io
https://sparta.github.io

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

8. Performance & scalability

The SPARTA distribution includes a bench sub-directory with several sample problems. The Benchmarks page of
the SPARTA WWW Site gives timing data for these problems run on different machines, for both strong and
weak scaling scenarioes:

free = free molecular flow in a box•
collide = collisional molecular flow in a box•
sphere = flow around a sphere•

For each problem there is an input script and sample log file outputs on different machines and different numbers
of processors. E.g. a log file like log.free.foo.1M.P means the the free molecular problem with 1 million grid cells
ran on P processors of machine "foo".

Each can be run as a serial benchmark (on one processor) or in parallel. In parallel, all the benchmarks can be run
as a fixed-size problem, meaning the same problem is run on various numbers of processors (strong scaling).
They can also be run as scaled-size problem, if the problem size is increased with the number of processors (weak
scaling).

Here is an example of how to run the benchmark problems. See the bench/README file for more details.

1-processor runs:

spa_g++ -v x 100 -v y 100 -v z 100 <in.free
spa_g++ -v x 100 -v y 100 -v z 100 <in.collide
spa_g++ -v x 50 -v y 50 -v z 50 <in.sphere

32-processor runs:

mpirun -np 32 spa_g++ -v x 100 -v y 100 -v z 100 <in.free
mpirun -np 32 spa_g++ -v x 100 -v y 100 -v z 100 <in.collide
mpirun -np 32 spa_g++ -v x 50 -v y 50 -v z 50 <in.sphere

Note that the benchmark scripts define variables that can be set from the command line that determine the size of
problem that is run. Specifically, the x,y,z variables specify the grid size (e.g. 100x100x100) that is used, and
variable n specifies the number of particles (10 per grid cell in this case).

82

https://sparta.github.io
https://sparta.github.io

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

9. Additional tools

SPARTA is designed to be a computational kernel for performing DSMC computations. Additional pre- and
post-processing steps are often necessary to setup and analyze a simulation. A few additional tools are provided
with the SPARTA distribution in the tools directory and are described briefly below.

Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing setup,
analysis, plotting, and visualization for SPARTA simulations. Pizza.py is written in Python and is available for
download from the Pizza.py web site.

Some of the Pizza.py tools relevant to SPARTA are as follows:

dump - read, write, manipulate particle dump files•
gl - 3d interactive visualization via OpenGL of dump or surface files•
sdata - read, write, manipulate surface files•
olog - read log files and extract columns of data•
vcr - VCR-style GUI for 3d interactive OpenGL visualization of dump or surface files•

The dump, sdata, and olog tools are included in the SPARTA distribution in the tools/pizza directory, and are
used by some of the scripts discussed below.

This is the list of tools included in the tools directory of the SPARTA distribution. Each is described in more
detail below.

dump2cfg - convert a particle dump file to CFG format•
dump2xyz - convert a particle dump file to XYZ format•
grid_refine - refine a grid around a surface•
implicit_grid - create a random porous region with implicit surfaces•
jagged - create jagged 2d/3d surfaces with explicit surfaces•
log2txt - extract columns of info from a log file•
logplot - plot columns of info from a log file via GnuPlot•
paraview - converters of SPARTA data to ParaView format•
stl2surf - convert an STL text file into a SPARTA surface file•
surf_create - create a surface file with simple objects•
surf_transform - transform surface via tranlate/scale/rotate operations•

dump2cfg tool

This is a Python script that converts a SPARTA particle dump file into extended CFG format so that it can be
visualized by the AtomEye visualization program. AtomEye is a very fast particle visualizer, capable of
interactive visualizations of millions of particles on a desktop machine. It is commonly used in the materials
modeling community.

See the header of the script for the syntax used to run it.

This script uses one or more of the "Pizza.py" tools provided in the tools/pizza directory. See the tools/README
file for info on how to set an environment variable so that the Pizza.py tool files can be found by Python, as well
as instructions on various ways to run a Python script.

83

https://sparta.github.io
http://pizza.sandia.gov
http://www.python.org
http://pizza.sandia.gov
http://www.paraview.org
http://mt.seas.upenn.edu/Archive/Graphics/A

dump2xyz tool

This is a Python script that converts a SPARTA particle dump file into XYZ format so that it can be visualized by
various visualization packages that read XYZ formatted files. An example is VMD package, commonly used in
the molecular dynamics modeling community.

See the header of the script for the syntax used to run it.

This script uses one or more of the "Pizza.py" tools provided in the tools/pizza directory. See the tools/README
file for info on how to set an environment variable so that the Pizza.py tool files can be found by Python, as well
as instructions on various ways to run a Python script.

grid_refine tool

This is a Python script that creates a SPARTA grid file adapted around the lines or triangles in a SPARTA surface
file. The resulting grid file can be read by the read_grid command. The surface file can be read by the read_surf
command.

See the header of the script for the various adaptivity options that are supported, and the syntax used to run it.

implicit_grid tool

This is a Python script which can be used to generate binary files representing porous media samples, as read by
the read_isurf command. The output files contain randomized grid corner point values which induce implicit
surfaces which can contain huge numbers of surface elements. They are useful for stress testing the implicit
surface options in SPARTA, as selected by the global surfs command.

See the header of the script for the syntax used to run it.

The examples/implicit directory uses these files as input.

jagged tools

These are 2 Python scripts (jagged2d.py and jagged3d.py) which can be used to generate SPARTA surface files in
a pattern that can be very jagged. The surfaces can contain huge numbers of surface elements and be read by the
read_surf command. They are useful for stress testing the explict surface options in SPARTA, including
distributed or non-distributed storage, as selected by the global surfs command.

See the header of the scripts for the syntax used to run them.

The examples/jagged directory uses these files as input.

log2txt tool

This is a Python script that reads a SPARTA log file, extracts selected columns of statistical output, and writes
them to a text file. It knows how to concatenate log file info across multiple successive runs. The columnar output
can then be read by various plotting packages.

See the header of the script for the syntax used to run it.

84

http://www.ks.uiuc.edu/Research/vmd

This script uses one or more of the "Pizza.py" tools provided in the tools/pizza directory. See the tools/README
file for info on how to set an environment variable so that the Pizza.py tool files can be found by Python, as well
as instructions on various ways to run a Python script.

logplot tool

This is a Python script that reads a SPARTA log file, extracts the selected columns of statistical output, and plots
them via the GnuPlot program. It knows how to concatenate log file info across multiple successive runs.

See the header of the script for the syntax used to run it. You must have GnuPlot installed on your system to use
this script. If you can type "gnuplot" from the command line to start GnuPlot, it should work. If not (e.g. because
you need a path name), then edit these 2 lines as needed in pizza/gnu.py:

except: PIZZA_GNUPLOT = "gnuplot"
except: PIZZA_GNUTERM = "x11"

For example, the first could become "/home/smith/bin/gnuplot". The second should only need changing if
GnuPlot requires a different setting to plot to your screen.

This script uses one or more of the "Pizza.py" tools provided in the tools/pizza directory. See the tools/README
file for info on how to set an environment variable so that the Pizza.py tool files can be found by Python, as well
as instructions on various ways to run a Python script.

paraview tools

The tools/paraview directory has scripts which convert SPARTA grid and surface data (input and output) to
ParaView format.

ParaView is a popular, powerful, freely-available visualization package. You must have ParaView installed to use
the Python scripts. See Section 6.16 for more details.

The scripts were developed by Tom Otahal (Sandia).

stl2surf tool

This is a Python script that reads a stereolithography (STL) text file and converts it to a SPARTA surface file.
STL files contain a collection of triangles and can be created by various mesh-generation programs. The format
for SPARTA surface files is described on the read_surf command doc page.

See the header of the script for the syntax used to run it, e.g.

% python stl2surf.py stlfile surffile

The script also checks the triangulated object to see if it is "watertight" and issues a warning if it is not, since
SPARTA will perform the same check. The read_surf command doc page explains what watertight means for 3d
objects.

surf_create tool

This is a Python script that creates a SPARTA surface file containing one or more simple objects whose surface is
represented as triangules (3d) or line segments (2d). Such files can be read by the read_surf command. The 3d
objects it supports are a sphere, box, and spikysphere (randomized radius at each point). The 2d objects it supports

85

http://www.paraview.org

are a circle, rectangle, triangle, and spikycircly (randomized radius at each point).

See the header of the script for the syntax used to run it.

surf_transform tool

This is a Python script that transforms a SPARTA surface file into a new surface file using various operations
supported by the read_surf command. These operations include translation, scaling, rotation, and inversion
(changing which side of the surface is inside vs outside).

See the header of the script for the syntax used to run it.

86

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

10. Modifying & extending SPARTA

This section describes how to extend SPARTA by modifying its source code.

10.1 Compute styles
10.2 Fix styles
10.3 Region styles
10.4 Collision styles
10.5 Surface collision styles
10.6 Chemistry styles
10.7 Dump styles
10.8 Input script commands

SPARTA is designed in a modular fashion so as to be easy to modify and extend with new functionality.

In this section, changes and additions users can make are listed along with minimal instructions. If you add a new
feature to SPARTA and think it will be of general interest to users, please submit it to the developers for inclusion
in the released version of SPARTA.

The best way to add a new feature is to find a similar feature in SPARTA and look at the corresponding source
and header files to figure out what it does. You will need some knowledge of C++ to be able to understand the
hi-level structure of SPARTA and its class organization, but functions (class methods) that do actual
computations are written in vanilla C-style code and operate on simple C-style data structures (vectors, arrays,
structs).

The new features described in this section require you to write a new C++ derived class. Creating a new class
requires 2 files, a source code file (*.cpp) and a header file (*.h). The derived class must provide certain methods
to work as a new option. Depending on how different your new feature is compared to existing features, you can
either derive from the base class itself, or from a derived class that already exists. Enabling SPARTA to invoke
the new class is as simple as putting the two source files in the src dir and re-building SPARTA.

The advantage of C++ and its object-orientation is that all the code and variables needed to define the new feature
are in the 2 files you write, and thus shouldn't make the rest of SPARTA more complex or cause side-effect bugs.

Here is a concrete example. Suppose you write 2 files collide_foo.cpp and collide_foo.h that define a new class
CollideFoo that computes inter-particle collisions described in the classic 1997 paper by Foo, et al. If you wish to
invoke those potentials in a SPARTA input script with a command like

collide foo mix-ID params.foo 3.0

then your collide_foo.h file should be structured as follows:

#ifdef COLLIDE_CLASS CollideStyle(foo,CollideFoo) #else ... (class definition for CollideFoo) ... #endif

where "foo" is the style keyword in the collid command, and CollideFoo is the class name defined in your
collide_foo.cpp and collide_foo.h files.

When you re-build SPARTA, your new collision model becomes part of the executable and can be invoked with a
collide command like the example above. Arguments like a mixture ID, params.foo (a file with collision
parameters), and 3.0 can be defined and processed by your new class.

87

https://sparta.github.io
https://sparta.github.io/authors.html

As illustrated by this example, many kinds of options are referred to in the SPARTA documentation as the "style"
of a particular command.

The instructions below give the header file for the base class that these styles are derived from. Public variables in
that file are ones used and set by the derived classes which are also used by the base class. Sometimes they are
also used by the rest of SPARTA. Virtual functions in the base class header file which are set = 0 are ones that
must be defined in the new derived class to give it the functionality SPARTA expects. Virtual functions that are
not set to 0 are functions that can be optionally defined.

Here are additional guidelines for modifying SPARTA and adding new functionality:

Think about whether what you want to do would be better as a pre- or post-processing step. Many
computations are more easily and more quickly done that way.

•

Don't do anything within the timestepping of a run that isn't parallel. E.g. don't accumulate a large volume
of data on a single processor and analyze it. This runs the risk of seriously degrading the parallel
efficiency.

If you have a question about how to compute something or about internal SPARTA data structures or
algorithms, feel free to send an email to the developers.

•

If you add something you think is generally useful, also send an email to the developers so we can
consider adding it to the SPARTA distribution.

•

10.1 Compute styles

Compute style commands calculate instantaneous properties of the simulated system. They can be global
properties, or per particle or per grid cell or per surface element properties. The result can be single value or
multiple values (global or per particle or per grid or per surf).

Here is a brief description of methods to define in a new derived class. See compute.h for details. All of these
methods are optional.

init initialization before a run
compute_scalar compute a global scalar quantity
compute_vector compute a global vector of quantities
compute_per_particle compute one or more quantities per particle
compute_per_grid compute one or more quantities per grid cell
compute_per_surf compute one or more quantities per surface element
surf_tally call when a particle hits a surface element
boundary_tally call when a particle hits a simulation box boundary
memory_usage tally memory usage

Note that computes with "/particle" in their style name calculate per particle quantities, with "/grid" in their name
calculate per grid cell quantities, and with "/surf" in their name calculate per surface element properties. All others
calcuulate global quantities.

Flags may also need to be set by a compute to enable specific properties. See the compute.h header file for
one-line descriptions.

88

https://sparta.github.io/authors.html
https://sparta.github.io/authors.html

10.2 Fix styles

Fix style commands perform operations during the timestepping loop of a simulation. They can define methods
which are invoked at different points within the timestep. They can be used to insert particles, perform
load-balancing, or perform time-averaging of various quantities. They can also define and maintain new
per-particle vectors and arrays that define quantities that move with particles when they migrate from processor to
processor or when the grid is rebalanced or adapated. They can also produce output of various kinds, similar to
compute commands.

Here is a brief description of methods to define in a new derived class. See fix.h for details. All of these methods
are optional, except setmask().

setmask set flags that determine when the fix is called within a timestep
init initialization before a run
start_of_step called at beginning of timestep
end_of_step called at end of timestep
add_particle called when a particle is created
surf_react called when a surface reaction occurs
memory_usage tally memory usage

Flags may also need to be set by a fix to enable specific properties. See the fix.h header file for one-line
descriptions.

Fixes can interact with the Particle class to create new per-particle vectors and arrays and access and update their
values. These are the relevant Particle class methods:

add_custom add a new custom vector or array
find_custom find a previously defined custom vector or array
remove_custom remove a custom vector or array

See the fix ambipolar for an example of how these are used. It define an integer vector called "ionambi" to flag
particles as ambipolar ions, and a floatin-point array called "velambi" to store the velocity vector for the
associated electron.

10.3 Region styles

Region style commands define geometric regions within the simulation box. Other commands use regions to limit
their computational scope.

Here is a brief description of methods to define in a new derived class. See region.h for details. The inside()
method is required.

inside: determine whether a point is inside/outside the region

10.4 Collision styles

Collision style commands define collision models that calculate interactions between particles in the same grid
cell.

89

Here is a brief description of methods to define in a new derived class. See collide.h for details. All of these
methods are required except init() and modify_params().

init initialization before a run
modify_params process style-specific options of the collide_modify command
vremax_init estimate VREmax settings
attempt_collision compute # of collisions to attempt for entire cell
attempt_collision compute # of collisions to attempt between 2 species groups
test_collision determine if a collision bewteen 2 particles occurs
setup_collision pre-computation before a 2-particle collision
perform_collision calculate the outcome of a 2-particle collision

10.5 Surface collision styles

Surface collision style commands define collision models that calculate interactions between a particle and
surface element.

Here is a brief description of methods to define in a new derived class. See surf_collide.h for details. All of these
methods are required except dynamic().

init initialization before a run
collide perform a particle/surface-element collision
dynamic allow surface property to change during a simulation

10.6 Chemistry styles

Particle/particle chemistry models in SPARTA are specified by reaction style commands which define lists of
possible reactions and their parameters.

Here is a brief description of methods to define in a new derived class. See react.h for details. The init() method is
optional; the attempt() method is required.

init initialization before a run
attempt attempt a chemical reaction between two particles

10.7 Dump styles

Dump commands output snapshots of simulation data to a file periodically during a simulation, in a particular file
format. Per particle, per grid cell, or per surface element data can be output.

Here is a brief description of methods to define in a new derived class. See dump.h for details. The init_style(),
modify_param(), and memory_usage() methods are optional; all the others are required.

init_style style-specific initialization before a run
modify_param process style-specific options of the dump_modify command

90

write_header write the header of a snapshot to a file
count # of entities this processor will output
pack pack a processor's data into a buffer
write_data write a buffer of data to a file
memory_usage tally memory usage

10.8 Input script commands

New commands can be added to SPARTA that will be recognized in input scripts. For example, the
create_particles, read_surf, and run commands are all implemented in this fashion. When such a command is
encountered in an input script, SPARTA simply creates a class with the corresponding name, invokes the
"command" method of the class, and passes it the arguments from the input script. The command() method can
perform whatever operations it wishes on SPARTA data structures.

The single method the new class must define is as follows:

command operations performed by the input script command
Of course, the new class can define other methods and variables as needed.

91

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

11. Python interface to SPARTA

This section describes how to build and use SPARTA via a Python interface.

11.1 Building SPARTA as a shared library•
11.2 Installing the Python wrapper into Python•
11.3 Extending Python with MPI to run in parallel•
11.4 Testing the Python-SPARTA interface•
11.5 Using SPARTA from Python•
11.6 Example Python scripts that use SPARTA•

The SPARTA distribution includes the file python/sparta.py which wraps the library interface to SPARTA. This
file makes it possible to run SPARTA, invoke SPARTA commands or give it an input script, extract SPARTA
results, and modify internal SPARTA variables, either from a Python script or interactively from a Python
prompt. You can do the former in serial or parallel. Running Python interactively in parallel does not generally
work, unless you have a package installed that extends your Python to enable multiple instances of Python to read
what you type.

Python is a powerful scripting and programming language which can be used to wrap software like SPARTA and
many other packages. It can be used to glue multiple pieces of software together, e.g. to run a coupled or
multiscale model. See Section 4.7 of the manual and the examples/COUPLE directory of the distribution for more
ideas about coupling SPARTA to other codes. See Section 2.4 about how to build SPARTA as a library, and
Section 4.6 for a description of the library interface provided in src/library.cpp and src/library.h and how to
extend it for your needs. As described below, that interface is what is exposed to Python. It is designed to be easy
to add functions to. This can extend the Python inteface as well. See details below.

IMPORTANT NOTE: The examples/COUPLE dir has not been added to the distribution yet.

By using the Python interface, SPARTA can also be coupled with a GUI or other visualization tools that display
graphs or animations in real time as SPARTA runs. Examples of such scripts are included in the python directory.

Two advantages of using Python are how concise the language is, and that it can be run interactively, enabling
rapid development and debugging of programs. If you use it to mostly invoke costly operations within SPARTA,
such as running a simulation for a reasonable number of timesteps, then the overhead cost of invoking SPARTA
thru Python will be negligible.

Before using SPARTA from a Python script, you need to do two things. You need to build SPARTA as a dynamic
shared library, so it can be loaded by Python. And you need to tell Python how to find the library and the Python
wrapper file python/sparta.py. Both these steps are discussed below. If you wish to run SPARTA in parallel from
Python, you also need to extend your Python with MPI. This is also discussed below.

The Python wrapper for SPARTA uses the amazing and magical (to me) "ctypes" package in Python, which
auto-generates the interface code needed between Python and a set of C interface routines for a library. Ctypes is
part of standard Python for versions 2.5 and later. You can check which version of Python you have installed, by
simply typing "python" at a shell prompt.

92

https://sparta.github.io
http://www.python.org

11.1 Building SPARTA as a shared library

Instructions on how to build SPARTA as a shared library are given in Section 2.4. A shared library is one that is
dynamically loadable, which is what Python requires. On Linux this is a library file that ends in ".so", not ".a".

For make, from the src directory, type

make mode=shlib foo

For CMake, from the build directory, tyoe

cmake -C /path/to/sparta/cmake/presets/foo.cmake -DBUILD_SHARED_LIBS=ON /path/to/sparta/cmake
make

where foo is the machine target name, such as icc or g++ or serial. This should create the file libsparta_foo.so in
the src directory, as well as a soft link libsparta.so, which is what the Python wrapper will load by default. Note
that if you are building multiple machine versions of the shared library, the soft link is always set to the most
recently built version.

If this fails, see Section 2.3 for more details, especially if your SPARTA build uses auxiliary libraries like MPI
which may not be built as shared libraries on your system.

11.2 Installing the Python wrapper into Python

For Python to invoke SPARTA, there are 2 files it needs to know about:

python/sparta.py•
src/libsparta.so•

Sparta.py is the Python wrapper on the SPARTA library interface. Libsparta.so is the shared SPARTA library that
Python loads, as described above.

You can insure Python can find these files in one of two ways:

set two environment variables•
run the python/install.py script•

If you set the paths to these files as environment variables, you only have to do it once. For the csh or tcsh shells,
add something like this to your ~/.cshrc file, one line for each of the two files:

setenv PYTHONPATH $PYTHONPATH:/home/sjplimp/sparta/python
setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:/home/sjplimp/sparta/src

If you use the python/install.py script, you need to invoke it every time you rebuild SPARTA (as a shared library)
or make changes to the python/sparta.py file.

You can invoke install.py from the python directory as

% python install.py [libdir] [pydir]

The optional libdir is where to copy the SPARTA shared library to; the default is /usr/local/lib. The optional pydir
is where to copy the sparta.py file to; the default is the site-packages directory of the version of Python that is

93

running the install script.

Note that libdir must be a location that is in your default LD_LIBRARY_PATH, like /usr/local/lib or /usr/lib. And
pydir must be a location that Python looks in by default for imported modules, like its site-packages dir. If you
want to copy these files to non-standard locations, such as within your own user space, you will need to set your
PYTHONPATH and LD_LIBRARY_PATH environment variables accordingly, as above.

If the install.py script does not allow you to copy files into system directories, prefix the python command with
"sudo". If you do this, make sure that the Python that root runs is the same as the Python you run. E.g. you may
need to do something like

% sudo /usr/local/bin/python install.py [libdir] [pydir]

You can also invoke install.py from the make command in the src directory as

% make install-python

In this mode you cannot append optional arguments. Again, you may need to prefix this with "sudo". In this mode
you cannot control which Python is invoked by root.

Note that if you want Python to be able to load different versions of the SPARTA shared library (see this section
below), you will need to manually copy files like libsparta_g++.so into the appropriate system directory. This is
not needed if you set the LD_LIBRARY_PATH environment variable as described above.

11.3 Extending Python with MPI to run in parallel

If you wish to run SPARTA in parallel from Python, you need to extend your Python with an interface to MPI.
This also allows you to make MPI calls directly from Python in your script, if you desire.

There are several Python packages available that purport to wrap MPI as a library and allow MPI functions to be
called from Python.

These include

pyMPI•
maroonmpi•
mpi4py•
myMPI•
Pypar•

All of these except pyMPI work by wrapping the MPI library and exposing (some portion of) its interface to your
Python script. This means Python cannot be used interactively in parallel, since they do not address the issue of
interactive input to multiple instances of Python running on different processors. The one exception is pyMPI,
which alters the Python interpreter to address this issue, and (I believe) creates a new alternate executable (in
place of "python" itself) as a result.

In principle any of these Python/MPI packages should work to invoke SPARTA in parallel and MPI calls
themselves from a Python script which is itself running in parallel. However, when I downloaded and looked at a
few of them, their documentation was incomplete and I had trouble with their installation. It's not clear if some of
the packages are still being actively developed and supported.

94

http://pympi.sourceforge.net/
http://code.google.com/p/maroonmpi/
http://code.google.com/p/mpi4py/
http://nbcr.sdsc.edu/forum/viewtopic.php?t=89&sid=c997fefc3933bd66204875b436940f16
http://code.google.com/p/pypar

The one I recommend, since I have successfully used it with SPARTA, is Pypar. Pypar requires the ubiquitous
Numpy package be installed in your Python. After launching python, type

import numpy

to see if it is installed. If not, here is how to install it (version 1.3.0b1 as of April 2009). Unpack the numpy tarball
and from its top-level directory, type

python setup.py build
sudo python setup.py install

The "sudo" is only needed if required to copy Numpy files into your Python distribution's site-packages directory.

To install Pypar (version pypar-2.1.4_94 as of Aug 2012), unpack it and from its "source" directory, type

python setup.py build
sudo python setup.py install

Again, the "sudo" is only needed if required to copy Pypar files into your Python distribution's site-packages
directory.

If you have successully installed Pypar, you should be able to run Python and type

import pypar

without error. You should also be able to run python in parallel on a simple test script

% mpirun -np 4 python test.py

where test.py contains the lines

import pypar
print "Proc %d out of %d procs" % (pypar.rank(),pypar.size())

and see one line of output for each processor you run on.

IMPORTANT NOTE: To use Pypar and SPARTA in parallel from Python, you must insure both are using the
same version of MPI. If you only have one MPI installed on your system, this is not an issue, but it can be if you
have multiple MPIs. Your SPARTA build is explicit about which MPI it is using, since you specify the details in
your lo-level src/MAKE/Makefile.foo file. Pypar uses the "mpicc" command to find information about the MPI it
uses to build against. And it tries to load "libmpi.so" from the LD_LIBRARY_PATH. This may or may not find
the MPI library that SPARTA is using. If you have problems running both Pypar and SPARTA together, this is an
issue you may need to address, e.g. by moving other MPI installations so that Pypar finds the right one.

11.4 Testing the Python-SPARTA interface

To test if SPARTA is callable from Python, launch Python interactively and type:

>>> from sparta import sparta
>>> spa = sparta()

If you get no errors, you're ready to use SPARTA from Python. If the 2nd command fails, the most common error
to see is

95

http://numpy.scipy.org

OSError: Could not load SPARTA dynamic library

which means Python was unable to load the SPARTA shared library. This typically occurs if the system can't find
the SPARTA shared library or one of the auxiliary shared libraries it depends on, or if something about the library
is incompatible with your Python. The error message should give you an indication of what went wrong.

You can also test the load directly in Python as follows, without first importing from the sparta.py file:

>>> from ctypes import CDLL
>>> CDLL("libsparta.so")

If an error occurs, carefully go thru the steps in Section 2.4 and above about building a shared library and about
insuring Python can find the necessary two files it needs.

Test SPARTA and Python in serial:

To run a SPARTA test in serial, type these lines into Python interactively from the bench directory:

>>> from sparta import sparta
>>> spa = sparta()
>>> spa.file("in.free")

Or put the same lines in the file test.py and run it as

% python test.py

Either way, you should see the results of running the in.free benchmark on a single processor appear on the
screen, the same as if you had typed something like:

spa_g++ <in.free

You can also pass command-line switches, e.g. to set input script variables, through the Python interface.

Replacing the "spa = sparta()" line above with

spa = sparta("","-v","x","100","-v","y","100","-v","z","100")

is the same as typing

spa_g++ -v x 100 -v y 100 -v z 100 <in.free

from the command line.

Test SPARTA and Python in parallel:

To run SPARTA in parallel, assuming you have installed the Pypar package as discussed above, create a test.py
file containing these lines:

import pypar
from sparta import sparta
spa = sparta()
spa.file("in.free")
print "Proc %d out of %d procs has" % (pypar.rank(),pypar.size()),lmp
pypar.finalize()

You can then run it in parallel as:

96

http://datamining.anu.edu.au/~ole/pypar

% mpirun -np 4 python test.py

and you should see the same output as if you had typed

% mpirun -np 4 spa_g++ <in.lj

Note that if you leave out the 3 lines from test.py that specify Pypar commands you will instantiate and run
SPARTA independently on each of the P processors specified in the mpirun command. In this case you should get
4 sets of output, each showing that a SPARTA run was made on a single processor, instead of one set of output
showing that SPARTA ran on 4 processors. If the 1-processor outputs occur, it means that Pypar is not working
correctly.

Also note that once you import the PyPar module, Pypar initializes MPI for you, and you can use MPI calls
directly in your Python script, as described in the Pypar documentation. The last line of your Python script should
be pypar.finalize(), to insure MPI is shut down correctly.

Running Python scripts:

Note that any Python script (not just for SPARTA) can be invoked in one of several ways:

% python foo.script
% python -i foo.script
% foo.script

The last command requires that the first line of the script be something like this:

#!/usr/local/bin/python
#!/usr/local/bin/python -i

where the path points to where you have Python installed, and requires that you have made the script file
executable:

% chmod +x foo.script

Without the "-i" flag, Python will exit when the script finishes. With the "-i" flag, you will be left in the Python
interpreter when the script finishes, so you can type subsequent commands. As mentioned above, you can only
run Python interactively when running Python on a single processor, not in parallel.

11.5 Using SPARTA from Python

The Python interface to SPARTA consists of a Python "sparta" module, the source code for which is in
python/sparta.py, which creates a "sparta" object, with a set of methods that can be invoked on that object. The
sample Python code below assumes you have first imported the "sparta" module in your Python script, as follows:

from sparta import sparta

These are the methods defined by the sparta module. If you look at the file src/library.cpp you will see that they
correspond one-to-one with calls you can make to the SPARTA library from a C++ or C or Fortran program.

spa = sparta() # create a SPARTA object using the default libsparta.so library
spa = sparta("g++") # create a SPARTA object using the libsparta_g++.so library
spa = sparta("",list) # ditto, with command-line args, e.g. list = ["-echo","screen"]
spa = sparta("g++",list)

97

spa.close() # destroy a SPARTA object

spa.file(file) # run an entire input script, file = "in.lj"
spa.command(cmd) # invoke a single SPARTA command, cmd = "run 100"

fnum = spa.extract_global(name,type) # extract a global quantity
 # name = "dt", "fnum", etc
 # type = 0 = int
 # 1 = double

temp = spa.extract_compute(id,style,type) # extract value(s) from a compute
 # id = ID of compute
 # style = 0 = global data
 # 1 = per particle data
 # 2 = per grid cell data
 # 3 = per surf element data
 # type = 0 = scalar
 # 1 = vector
 # 2 = array

var = spa.extract_variable(name,flag) # extract value(s) from a variable
 # name = name of variable
 # flag = 0 = equal-style variable
 # 1 = particle-style variable

IMPORTANT NOTE: Currently, the creation of a SPARTA object from within sparta.py does not take an MPI
communicator as an argument. There should be a way to do this, so that the SPARTA instance runs on a subset of
processors if desired, but I don't know how to do it from Pypar. So for now, it runs with MPI_COMM_WORLD,
which is all the processors. If someone figures out how to do this with one or more of the Python wrappers for
MPI, like Pypar, please let us know and we will amend these doc pages.

Note that you can create multiple SPARTA objects in your Python script, and coordinate and run multiple
simulations, e.g.

from sparta import sparta
spa1 = sparta()
spa2 = sparta()
spa1.file("in.file1")
spa2.file("in.file2")

The file() and command() methods allow an input script or single commands to be invoked.

The extract_global(), extract_compute(), and extract_variable() methods return values or pointers to data
structures internal to SPARTA.

For extract_global() see the src/library.cpp file for the list of valid names. New names can easily be added. A
double or integer is returned. You need to specify the appropriate data type via the type argument.

For extract_compute(), the global, per particle, per grid cell, or per surface element results calulated by the
compute can be accessed. What is returned depends on whether the compute calculates a scalar or vector or array.
For a scalar, a single double value is returned. If the compute or fix calculates a vector or array, a pointer to the
internal SPARTA data is returned, which you can use via normal Python subscripting. See Section 6.4 of the
manual for a discussion of global, per particle, per grid, and per surf data, and of scalar, vector, and array data
types. See the doc pages for individual computes for a description of what they calculate and store.

For extract_variable(), an equal-style or particle-style variable is evaluated and its result returned.

98

For equal-style variables a single double value is returned and the group argument is ignored. For particle-style
variables, a vector of doubles is returned, one value per particle, which you can use via normal Python
subscripting.

As noted above, these Python class methods correspond one-to-one with the functions in the SPARTA library
interface in src/library.cpp and library.h. This means you can extend the Python wrapper via the following steps:

Add a new interface function to src/library.cpp and src/library.h.•
Rebuild SPARTA as a shared library.•
Add a wrapper method to python/sparta.py for this interface function.•
You should now be able to invoke the new interface function from a Python script. Isn't ctypes amazing?•

11.6 Example Python scripts that use SPARTA

There are demonstration Python scripts included in the python/examples directory of the SPARTA distribution, to
illustrate what is possible when Python wraps SPARTA.

See the python/README file for more details.

99

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

12. Errors

This section describes the various kinds of errors you can encounter when using SPARTA.

12.1 Common problems
12.2 Reporting bugs
12.3 Error & warning messages

12.1 Common problems

If two SPARTA runs do not produce the same answer on different machines or different numbers of processors,
this is typically not a bug. On different machines, there can be numerical round-off in the computations which
causes slight differences in particle trajectories or the number of particles, which will lead to numerical
divergence of the particle trajectores and averaged statistical quantities within a few 100s or few 1000s of
timesteps. When running on different numbers of processors, random numbers are used in different ways, so two
simulations can be immediately different. However, the statistical properties (e.g. overall particle temperature or
per grid cell temperature or surface energy flux) for the two runs on different machines or on different numbers of
processors should still be similar.

A SPARTA simulation typically has two stages, setup and run. Most SPARTA errors are detected at setup time;
others like running out of memory may not occur until the middle of a run.

SPARTA tries to flag errors and print informative error messages so you can fix the problem. Of course,
SPARTA cannot figure out physics or numerical mistakes, like choosing too big a timestep or specifying
erroneous collision parameters. If you run into errors that SPARTA doesn't catch that you think it should flag,
please send an email to the developers.

If you get an error message about an invalid command in your input script, you can determine what command is
causing the problem by looking in the log.sparta file, or using the echo command in your script or "-echo screen"
as a command-line argument to see it on the screen. For a given command, SPARTA expects certain arguments in
a specified order. If you mess this up, SPARTA will often flag the error, but it may read a bogus argument and
assign a value that is valid, but not what you wanted.

Generally, SPARTA will print a message to the screen and logfile and exit gracefully when it encounters a fatal
error. Sometimes it will print a WARNING to the screen and logfile and continue on; you can decide if the
WARNING is important or not. A WARNING message that is generated in the middle of a run is only printed to
the screen, not to the logfile, to avoid cluttering up statistical output. If SPARTA crashes or hangs without spitting
out an error message first then it could be a bug (see the next section) or one of the following cases:

SPARTA runs in the available memory a processor allows to be allocated. Most reasonable runs are compute
limited, not memory limited, so this shouldn't be a bottleneck on most platforms. Almost all large memory
allocations in the code are done via C-style malloc's which will generate an error message if you run out of
memory. Smaller chunks of memory are allocated via C++ "new" statements. If you are unlucky, you could run
out of memory just when one of these small requests is made, in which case the code will crash or hang (in
parallel), since SPARTA doesn't trap on those errors.

Illegal arithmetic can cause SPARTA to run slow or crash. This is typically due to invalid physics and numerics
that your simulation is computing. If you see wild statistical values or NaN values in your SPARTA output,
something is wrong with your simulation. If you suspect this is happening, it is a good idea to print out statistical

100

https://sparta.github.io
https://sparta.github.io/authors.html

info frequently (e.g. every timestep) via the stats command so you can monitor what is happening. Visualizing the
particle motion is also a good idea to insure your model is behaving as you expect.

In parallel, one way SPARTA can hang is due to how different MPI implementations handle buffering of
messages. If the code hangs without an error message, it may be that you need to specify an MPI setting or two
(usually via an environment variable) to enable buffering or boost the sizes of messages that can be buffered.

12.2 Reporting bugs

If you are confident that you have found a bug in SPARTA, please follow these steps.

Check the New features and bug fixes section of the SPARTA web site to see if the bug has already been fixed.

If not, please email a description of the problem to the developers.

The most useful thing you can do to help us fix the bug is to isolate the problem. Run it on the smallest number of
particles and grid cells and fewest number of processors and with the simplest and quick-to-run input script that
reproduces the bug. And try to identify what command or combination of commands is causing the problem.

12.3 Error & warning messages

These are two alphabetic lists of the ERROR and WARNING messages SPARTA prints out and the reason why.
If the explanation here is not sufficient, the documentation for the offending command may help. Error and
warning messages also list the source file and line number where the error was generated. For example, this
message

ERROR: Illegal create_particles command (create_particles.cpp:68)

means that line #68 in the file src/create_particles.cpp generated the error. Looking in the source code may help
you figure out what went wrong.

Errors:

%d read_surf point pairs are too close
A pair of points is very close together, relative to grid size, inidicating the grid is too large, or an
ill-formed surface.

%d read_surf points are not inside simulation box
If clipping was not performed, all points in surf file must be inside (or on surface of) simulation box.

%d surface elements not assigned to a collision model
All surface elements must be assigned to a surface collision model via the surf_modify command before a
simulation is perforemd.

All universe/uloop variables must have same # of values
Self-explanatory.

All variables in next command must be same style
Self-explanatory.

Arccos of invalid value in variable formula
Argument of arccos() must be between -1 and 1.

Arcsin of invalid value in variable formula
Argument of arcsin() must be between -1 and 1.

Axi-symmetry is not yet supported in SPARTA
This error condition will be removed after axi-symmetry is fully implemented.

101

https://sparta.github.io/bug.html
https://sparta.github.io
https://sparta.github.io/authors.html

Axi-symmetry only allowed for 2d simulation
Self-explanatory.

BPG edge on more than 2 faces
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Bad grid of processors for balance_grid block
Product of Px,Py,Pz must equal total number of processors.

Bad grid of processors for create_grid
For block style, product of Px,Py,Pz must equal total number of processors.

Bigint setting in spatype.h is invalid
Size of bigint is less than size of smallint.

Bigint setting in spatype.h is not compatible
Bigint size stored in restart file is not consistent with SPARTA version you are running.

Both restart files must use % or neither
Self-explanatory.

Both sides of boundary must be periodic
Cannot specify a boundary as periodic only on the lo or hi side. Must be periodic on both sides.

Bound_modify surf requires wall be a surface
The box boundary must be of style "s" to be assigned a surface collision model.

Bound_modify surf_collide ID is unknown
Self-explanatory.

Boundary command after simulation box is defined
The boundary command cannot be used after a read_data, read_restart, or create_box command.

Box boundary not assigned a surf_collide ID
Any box boundary of style "s" must be assigned to a surface collision model via the bound_modify
command, before a simulation is performed.

Box bounds are invalid
The box boundaries specified in the read_data file are invalid. The lo value must be less than the hi value
for all 3 dimensions.

Box ylo must be 0.0 for axi-symmetric model
Self-explanatory.

Can only use -plog with multiple partitions
Self-explanatory. See doc page discussion of command-line switches.

Can only use -pscreen with multiple partitions
Self-explanatory. See doc page discussion of command-line switches.

Cannot add new species to mixture all or species
This is done automatically for these 2 mixtures when each species is defined by the species command.

Cannot balance grid before grid is defined
Self-explanatory.

Cannot create grid before simulation box is defined
Self-explanatory.

Cannot create grid when grid is already defined
Self-explanatory.

Cannot create particles before grid is defined
Self-explanatory.

Cannot create particles before simulation box is defined
Self-explanatory.

Cannot create/grow a vector/array of pointers for %s
SPARTA code is making an illegal call to the templated memory allocaters, to create a vector or array of
pointers.

Cannot create_box after simulation box is defined
A simulation box can only be defined once.

102

Cannot open VSS parameter file %s
Self-explantory.

Cannot open dir to search for restart file
Using a "*" in the name of the restart file will open the current directory to search for matching file
names.

Cannot open dump file
The output file for the dump command cannot be opened. Check that the path and name are correct.

Cannot open file %s
The specified file cannot be opened. Check that the path and name are correct. If the file is a compressed
file, also check that the gzip executable can be found and run.

Cannot open file variable file %s
The specified file cannot be opened. Check that the path and name are correct.

Cannot open fix ave/time file %s
The specified file cannot be opened. Check that the path and name are correct.

Cannot open fix print file %s
The output file generated by the fix print command cannot be opened

Cannot open gzipped file
SPARTA was compiled without support for reading and writing gzipped files through a pipeline to the
gzip program with -DSPARTA_GZIP.

Cannot open input script %s
Self-explanatory.

Cannot open log.sparta
The default SPARTA log file cannot be opened. Check that the directory you are running in allows for
files to be created.

Cannot open logfile
The SPARTA log file named in a command-line argument cannot be opened. Check that the path and
name are correct.

Cannot open logfile %s
The SPARTA log file specified in the input script cannot be opened. Check that the path and name are
correct.

Cannot open print file %s
Self-explanatory.

Cannot open reaction file %s
Self-explanatory.

Cannot open restart file %s
The specified file cannot be opened. Check that the path and name are correct. If the file is a compressed
file, also check that the gzip executable can be found and run.

Cannot open screen file
The screen file specified as a command-line argument cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot open species file %s
Self-explanatory.

Cannot open universe log file
For a multi-partition run, the master log file cannot be opened. Check that the directory you are running in
allows for files to be created.

Cannot open universe screen file
For a multi-partition run, the master screen file cannot be opened. Check that the directory you are
running in allows for files to be created.

Cannot read grid before simulation box is defined
Self-explanatory.

Cannot read grid when grid is already defined
Self-explanatory.

103

Cannot read_restart after simulation box is defined
The read_restart command cannot be used after a read_data, read_restart, or create_box command.

Cannot read_surf after particles are defined
This is because the newly read surface objects may enclose particles.

Cannot read_surf before grid ghost cells are defined
This needs to be documented if keep this restriction.

Cannot read_surf before grid is defined
Self-explantory.

Cannot redefine variable as a different style
An equal-style variable can be re-defined but only if it was originally an equal-style variable.

Cannot reset timestep with a time-dependent fix defined
The timestep cannot be reset when a fix that keeps track of elapsed time is in place.

Cannot run 2d simulation with nonperiodic Z dimension
Use the boundary command to make the z dimension periodic in order to run a 2d simulation.

Cannot set global surfmax when surfaces already exist
This setting must be made before any surfac elements are read via the read_surf command.

Cannot use collide_modify with no collisions defined
A collision style must be specified first.

Cannot use cwiggle in variable formula between runs
This is a function of elapsed time.

Cannot use dump_modify fileper without % in dump file name
Self-explanatory.

Cannot use dump_modify nfile without % in dump file name
Self-explanatory.

Cannot use fix inflow in y dimension for axisymmetric
This is because the y dimension boundaries cannot be inflow boundaries for an axisymmetric model.

Cannot use fix inflow in z dimension for 2d simulation
Self-explanatory.

Cannot use fix inflow n > 0 with perspecies yes
This is because the perspecies option calculates the number of particles to insert itself.

Cannot use fix inflow on periodic boundary
Self-explanatory.

Cannot use group keyword with mixture all or species
This is because the groups for these 2 mixtures are pre-defined.

Cannot use include command within an if command
Self-explanatory.

Cannot use non-rcb fix balance with a grid cutoff
This is because the load-balancing will generate a partitioning of cells to processors that is dispersed and
which will not work with a grid cutoff >= 0.0.

Cannot use ramp in variable formula between runs
This is because the ramp() function is time dependent.

Cannot use specified create_grid options with more than one level
When defining a grid with more than one level, the other create_grid keywords (stride, clump, block, etc)
cannot be used. The child grid cells will be assigned to processors in round-robin order as explained on
the create_grid doc page.

Cannot use swiggle in variable formula between runs
This is a function of elapsed time.

Cannot use vdisplace in variable formula between runs
This is a function of elapsed time.

Cannot use weight cell radius unless axisymmetric
An axisymmetric model is required for this style of cell weighting.

Cannot use write_restart fileper without % in restart file name

104

Self-explanatory.
Cannot use write_restart nfile without % in restart file name

Self-explanatory.
Cannot weight cells before grid is defined

Self-explanatory.
Cannot write grid when grid is not defined

Self-explanatory.
Cannot write restart file before grid is defined

Self-explanatory.
Cell ID has too many bits

Cell IDs must fit in 32 bits (SPARTA small integer) or 64 bits (SPARTA big integer), as specified by the
-DSPARTA_SMALL, -DSPARTA_BIG, or -DSPARTA_BIGBIG options in the low-level Makefile used
to build SPARTA. See Section 2.2 of the manual for details. And see Section 4.8 for details on how cell
IDs are formatted.

Cell type mis-match when marking on neigh proc
Grid cell marking as inside, outside, or overlapping with surface elements failed. Please report the issue to
the SPARTA developers.

Cell type mis-match when marking on self
Grid cell marking as inside, outside, or overlapping with surface elements failed. Please report the issue to
the SPARTA developers.

Cellint setting in spatype.h is not compatible
Cellint size stored in restart file is not consistent with SPARTA version you are running.

Collision mixture does not contain all species
The specified mixture must contain all species in the simulation so that they can be assigned to collision
groups.

Collision mixture does not exist
Self-explantory.

Compute ID for compute reduce does not exist
Self-explanatory.

Compute ID for fix ave/grid does not exist
Self-explanatory.

Compute ID for fix ave/surf does not exist
Self-explanatory.

Compute ID for fix ave/time does not exist
Self-explanatory.

Compute ID must be alphanumeric or underscore characters
Self-explanatory.

Compute boundary mixture ID does not exist
Self-explanatory.

Compute grid mixture ID does not exist
Self-explanatory.

Compute reduce compute array is accessed out-of-range
An index for the array is out of bounds.

Compute reduce compute calculates global or surf values
The compute reduce command does not operate on this kind of values. The variable command has special
functions that can reduce global values.

Compute reduce compute does not calculate a per-grid array
This is necessary if a column index is used to specify the compute.

Compute reduce compute does not calculate a per-grid vector
This is necessary if no column index is used to specify the compute.

Compute reduce compute does not calculate a per-particle array
This is necessary if a column index is used to specify the compute.

105

Compute reduce compute does not calculate a per-particle vector
This is necessary if no column index is used to specify the compute.

Compute reduce fix array is accessed out-of-range
An index for the array is out of bounds.

Compute reduce fix calculates global values
A fix that calculates peratom or local values is required.

Compute reduce fix does not calculate a per-grid array
This is necessary if a column index is used to specify the fix.

Compute reduce fix does not calculate a per-grid vector
This is necessary if no column index is used to specify the fix.

Compute reduce fix does not calculate a per-particle array
This is necessary if a column index is used to specify the fix.

Compute reduce fix does not calculate a per-particle vector
This is necessary if no column index is used to specify the fix.

Compute reduce fix does not calculate a per-surf array
This is necessary if a column index is used to specify the fix.

Compute reduce fix does not calculate a per-surf vector
This is necessary if no column index is used to specify the fix.

Compute reduce replace requires min or max mode
Self-explanatory.

Compute reduce variable is not particle-style variable
This is the only style of variable that can be reduced.

Compute sonine/grid mixture ID does not exist
Self-explanatory.

Compute surf mixture ID does not exist
Self-explanatory.

Compute used in variable between runs is not current
Computes cannot be invoked by a variable in between runs. Thus they must have been evaluated on the
last timestep of the previous run in order for their value(s) to be accessed. See the doc page for the
variable command for more info.

Could not create a single particle
The specified position was either not inside the simulation domain or not inside a grid cell with no
intersections with any defined surface elements.

Could not find compute ID to delete
Self-explanatory.

Could not find dump grid compute ID
Self-explanatory.

Could not find dump grid fix ID
Self-explanatory.

Could not find dump grid variable name
Self-explanatory.

Could not find dump image compute ID
Self-explanatory.

Could not find dump image fix ID
Self-explanatory.

Could not find dump modify compute ID
Self-explanatory.

Could not find dump modify fix ID
Self-explanatory.

Could not find dump modify variable name
Self-explanatory.

Could not find dump particle compute ID

106

Self-explanatory.
Could not find dump particle fix ID

Self-explanatory.
Could not find dump particle variable name

Self-explanatory.
Could not find dump surf compute ID

Self-explanatory.
Could not find dump surf fix ID

Self-explanatory.
Could not find dump surf variable name

Self-explanatory.
Could not find fix ID to delete

Self-explanatory.
Could not find split point in split cell

This is an error when calculating how a grid cell is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Could not find stats compute ID
Compute ID specified in stats_style command does not exist.

Could not find stats fix ID
Fix ID specified in stats_style command does not exist.

Could not find stats variable name
Self-explanatory.

Could not find surf_modify sc-ID
Self-explanatory.

Could not find surf_modify surf-ID
Self-explanatory.

Could not find undump ID
A dump ID used in the undump command does not exist.

Cound not find dump_modify ID
Self-explanatory.

Create_box z box bounds must straddle 0.0 for 2d simulations
Self-explanatory.

Create_grid nz value must be 1 for a 2d simulation
Self-explanatory.

Create_particles global option not yet implemented
Self-explantory.

Create_particles mixture ID does not exist
Self-explanatory.

Create_particles single requires z = 0 for 2d simulation
Self-explanatory.

Create_particles species ID does not exist
Self-explanatory.

Created incorrect # of particles: %ld versus %ld
The create_particles command did not function properly.

Delete region ID does not exist
Self-explanatory.

Did not assign all restart particles correctly
One or more particles in the restart file were not assigned to a processor. Please report the issue to the
SPARTA developers.

Did not assign all restart split grid cells correctly
One or more split grid cells in the restart file were not assigned to a processor. Please report the issue to
the SPARTA developers.

107

Did not assign all restart sub grid cells correctly
One or more sub grid cells in the restart file were not assigned to a processor. Please report the issue to
the SPARTA developers.

Did not assign all restart unsplit grid cells correctly
One or more unsplit grid cells in the restart file were not assigned to a processor. Please report the issue to
the SPARTA developers.

Dimension command after simulation box is defined
The dimension command cannot be used after a read_data, read_restart, or create_box command.

Divide by 0 in variable formula
Self-explanatory.

Dump every variable returned a bad timestep
The variable must return a timestep greater than the current timestep.

Dump grid and fix not computed at compatible times
Fixes generate values on specific timesteps. The dump grid output does not match these timesteps.

Dump grid compute does not calculate per-grid array
Self-explanatory.

Dump grid compute does not compute per-grid info
Self-explanatory.

Dump grid compute vector is accessed out-of-range
Self-explanatory.

Dump grid fix does not compute per-grid array
Self-explanatory.

Dump grid fix does not compute per-grid info
Self-explanatory.

Dump grid fix vector is accessed out-of-range
Self-explanatory.

Dump grid variable is not grid-style variable
Self-explanatory.

Dump image and fix not computed at compatible times
Fixes generate values on specific timesteps. The dump image output does not match these timesteps.

Dump image cannot use grid and gridx/gridy/gridz
Can only use grid option or one or more of grid x,y,z options by themselves, not together.

Dump image compute does not have requested column
Self-explanatory.

Dump image compute does not produce a vector
Self-explanatory.

Dump image compute is not a per-grid compute
Self-explanatory.

Dump image compute is not a per-surf compute
Self-explanatory.

Dump image fix does not have requested column
Self-explanatory.

Dump image fix does not produce a vector
Self-explanatory.

Dump image fix does not produce per-grid values
Self-explanatory.

Dump image fix does not produce per-surf values
Self-explanatory.

Dump image persp option is not yet supported
Self-explanatory.

Dump image requires one snapshot per file
Use a "*" in the filename.

108

Dump modify compute ID does not compute per-particle array
Self-explanatory.

Dump modify compute ID does not compute per-particle info
Self-explanatory.

Dump modify compute ID does not compute per-particle vector
Self-explanatory.

Dump modify compute ID vector is not large enough
Self-explanatory.

Dump modify fix ID does not compute per-particle array
Self-explanatory.

Dump modify fix ID does not compute per-particle info
Self-explanatory.

Dump modify fix ID does not compute per-particle vector
Self-explanatory.

Dump modify fix ID vector is not large enough
Self-explanatory.

Dump modify variable is not particle-style variable
Self-explanatory.

Dump particle and fix not computed at compatible times
Fixes generate values on specific timesteps. The dump particle output does not match these timesteps.

Dump particle compute does not calculate per-particle array
Self-explanatory.

Dump particle compute does not calculate per-particle vector
Self-explanatory.

Dump particle compute does not compute per-particle info
Self-explanatory.

Dump particle compute vector is accessed out-of-range
Self-explanatory.

Dump particle fix does not compute per-particle array
Self-explanatory.

Dump particle fix does not compute per-particle info
Self-explanatory.

Dump particle fix does not compute per-particle vector
Self-explanatory.

Dump particle fix vector is accessed out-of-range
Self-explanatory.

Dump particle variable is not particle-style variable
Self-explanatory.

Dump surf and fix not computed at compatible times
Fixes generate values on specific timesteps. The dump surf output does not match these timesteps.

Dump surf compute does not calculate per-surf array
Self-explanatory.

Dump surf compute does not compute per-surf info
Self-explanatory.

Dump surf compute vector is accessed out-of-range
Self-explanatory.

Dump surf fix does not compute per-surf array
Self-explanatory.

Dump surf fix does not compute per-surf info
Self-explanatory.

Dump surf fix vector is accessed out-of-range
Self-explanatory.

109

Dump surf variable is not surf-style variable
Self-explanatory.

Dump_modify buffer yes not allowed for this style
Not all dump styles allow dump_modify buffer yes. See the dump_modify doc page.

Dump_modify region ID does not exist
Self-explanatory.

Duplicate cell ID in grid file
Parent cell IDs must be unique.

Edge not part of 2 vertices
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Edge part of invalid vertex
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Edge part of same vertex twice
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Empty brackets in variable
There is no variable syntax that uses empty brackets. Check the variable doc page.

Failed to allocate %ld bytes for array %s
The SPARTA simulation has run out of memory. You need to run a smaller simulation or on more
processors.

Failed to open FFmpeg pipeline to file %s
The specified file cannot be opened. Check that the path and name are correct and writable and that the
FFmpeg executable can be found and run.

Failed to reallocate %ld bytes for array %s
The SPARTA simulation has run out of memory. You need to run a smaller simulation or on more
processors.

File variable could not read value
Check the file assigned to the variable.

Fix ID for compute reduce does not exist
Self-explanatory.

Fix ID for fix ave/grid does not exist
Self-explanatory.

Fix ID for fix ave/surf does not exist
Self-explanatory.

Fix ID for fix ave/time does not exist
Self-explanatory.

Fix ID must be alphanumeric or underscore characters
Self-explanatory.

Fix ave/grid compute array is accessed out-of-range
Self-explanatory.

Fix ave/grid compute does not calculate a per-grid array
Self-explanatory.

Fix ave/grid compute does not calculate a per-grid vector
Self-explanatory.

Fix ave/grid compute does not calculate per-grid values
Self-explanatory.

Fix ave/grid fix array is accessed out-of-range
Self-explanatory.

Fix ave/grid fix does not calculate a per-grid array
Self-explanatory.

110

Fix ave/grid fix does not calculate a per-grid vector
Self-explanatory.

Fix ave/grid fix does not calculate per-grid values
Self-explanatory.

Fix ave/grid variable is not grid-style variable
Self-explanatory.

Fix ave/surf compute array is accessed out-of-range
Self-explanatory.

Fix ave/surf compute does not calculate a per-surf array
Self-explanatory.

Fix ave/surf compute does not calculate a per-surf vector
Self-explanatory.

Fix ave/surf compute does not calculate per-surf values
Self-explanatory.

Fix ave/surf fix array is accessed out-of-range
Self-explanatory.

Fix ave/surf fix does not calculate a per-surf array
Self-explanatory.

Fix ave/surf fix does not calculate a per-surf vector
Self-explanatory.

Fix ave/surf fix does not calculate per-surf values
Self-explanatory.

Fix ave/surf variable is not surf-style variable
Self-explanatory.

Fix ave/time cannot use variable with vector mode
Variables produce scalar values.

Fix ave/time columns are inconsistent lengths
Self-explanatory.

Fix ave/time compute array is accessed out-of-range
An index for the array is out of bounds.

Fix ave/time compute does not calculate a scalar
Self-explantory.

Fix ave/time compute does not calculate a vector
Self-explantory.

Fix ave/time compute does not calculate an array
Self-explanatory.

Fix ave/time compute vector is accessed out-of-range
The index for the vector is out of bounds.

Fix ave/time fix array is accessed out-of-range
An index for the array is out of bounds.

Fix ave/time fix does not calculate a scalar
Self-explanatory.

Fix ave/time fix does not calculate a vector
Self-explanatory.

Fix ave/time fix does not calculate an array
Self-explanatory.

Fix ave/time fix vector is accessed out-of-range
The index for the vector is out of bounds.

Fix ave/time variable is not equal-style variable
Self-explanatory.

Fix command before simulation box is defined
The fix command cannot be used before a read_data, read_restart, or create_box command.

111

Fix for fix ave/grid not computed at compatible time
Fixes generate values on specific timesteps. Fix ave/grid is requesting a value on a non-allowed timestep.

Fix for fix ave/surf not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/surf is requesting a value on a non-allowed
timestep.

Fix for fix ave/time not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/time is requesting a value on a non-allowed
timestep.

Fix in variable not computed at compatible time
Fixes generate their values on specific timesteps. The variable is requesting the values on a non-allowed
timestep.

Fix inflow mixture ID does not exist
Self-explanatory.

Fix inflow used on outflow boundary
Self-explanatory.

Fix used in compute reduce not computed at compatible time
Fixes generate their values on specific timesteps. Compute reduce is requesting a value on a non-allowed
timestep.

Found edge in same direction
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Found no restart file matching pattern
When using a "*" in the restart file name, no matching file was found.

Gravity in y not allowed for axi-symmetric model
Self-explanatory.

Gravity in z not allowed for 2d
Self-explanatory.

Grid cell corner points on boundary marked as unknown = %d
Corner points of grid cells on the boundary of the simulation domain were not all marked successfully as
inside, outside, or overlapping with surface elements. Please report the issue to the SPARTA developers.

Grid cells marked as unknown = %d
Grid cell marking as inside, outside, or overlapping with surface elements did not successfully mark all
cells. Please report the issue to the SPARTA developers.

Grid cutoff is longer than box length in a periodic dimension
This is not allowed. Reduce the size of the cutoff specified by the global gridcut command.

Grid in/out other-mark error %d\n
Grid cell marking as inside, outside, or overlapping with surface elements failed. Please report the issue to
the SPARTA developers.

Grid in/out self-mark error %d for icell %d, icorner %d, connect %d %d, other cell %d, other corner %d, values
%d %d\n

A grid cell was incorrectly marked as inside, outside, or overlapping with surface elements. Please report
the issue to the SPARTA developers.

Grid-style variables are not yet implemented
Self-explanatory.

Illegal ... command
Self-explanatory. Check the input script syntax and compare to the documentation for the command. You
can use -echo screen as a command-line option when running SPARTA to see the offending line.

Inconsistent surface to grid mapping in read_restart
When surface elements were mapped to grid cells after reading a restart file, an inconsitent count of
elements in a grid cell was found, as compared to the original simulation, which should not happen.
Please report the issue to the SPARTA developers.

Incorrect format of parent cell in grid file

112

Number of words in a parent cell line was not the expected number.
Incorrect line format in VSS parameter file

Number of parameters in a line read from file is not valid.
Incorrect line format in species file

Line read did not have expected number of fields.
Incorrect line format in surf file

Self-explanatory.
Incorrect point format in surf file

Self-explanatory.
Incorrect triangle format in surf file

Self-explanatory.
Index between variable brackets must be positive

Self-explanatory.
Input line quote not followed by whitespace

An end quote must be followed by whitespace.
Invalid Boolean syntax in if command

Self-explanatory.
Invalid Nx,Ny,Nz values in grid file

A Nx or Ny or Nz value for a parent cell is <= 0.
Invalid SPARTA restart file

The file does not appear to be a SPARTA restart file since it does not have the expected magic string at
the beginning.

Invalid attribute in dump grid command
Self-explanatory.

Invalid attribute in dump modify command
Self-explantory.

Invalid attribute in dump particle command
Self-explanatory.

Invalid attribute in dump surf command
Self-explanatory.

Invalid balance_grid style for non-uniform grid
Some balance styles can only be used when the grid is uniform. See the command doc page for details.

Invalid call to ComputeGrid::post_process_grid()
This indicates a coding error. Please report the issue to the SPARTA developers.

Invalid call to ComputeSonineGrid::post_process_grid()
This indicates a coding error. Please report the issue to the SPARTA developers.

Invalid cell ID in grid file
A cell ID could not be converted into numeric format.

Invalid character in species ID
The only allowed characters are alphanumeric, an underscore, a plus sign, or a minus sign.

Invalid collide style
The choice of collision style is unknown.

Invalid color in dump_modify command
The specified color name was not in the list of recognized colors. See the dump_modify doc page.

Invalid color map min/max values
The min/max values are not consistent with either each other or with values in the color map.

Invalid command-line argument
One or more command-line arguments is invalid. Check the syntax of the command you are using to
launch SPARTA.

Invalid compute ID in variable formula
The compute is not recognized.

Invalid compute property/grid field for 2d simulation

113

Fields that reference z-dimension properties cannot be used in a 2d simulation.
Invalid compute style

Self-explanatory.
Invalid dump frequency

Dump frequency must be 1 or greater.
Invalid dump grid field for 2d simulation

Self-explanatory.
Invalid dump image filename

The file produced by dump image cannot be binary and must be for a single processor.
Invalid dump image persp value

Persp value must be >= 0.0.
Invalid dump image theta value

Theta must be between 0.0 and 180.0 inclusive.
Invalid dump image zoom value

Zoom value must be > 0.0.
Invalid dump movie filename

The file produced by dump movie cannot be binary or compressed and must be a single file for a single
processor.

Invalid dump style
The choice of dump style is unknown.

Invalid dump surf field for 2d simulation
Self-explanatory.

Invalid dump_modify threshhold operator
Operator keyword used for threshold specification in not recognized.

Invalid fix ID in variable formula
The fix is not recognized.

Invalid fix ave/time off column
Self-explantory.

Invalid fix style
The choice of fix style is unknown.

Invalid flag in grid section of restart file
Unrecognized entry in restart file.

Invalid flag in header section of restart file
Unrecognized entry in restart file.

Invalid flag in layout section of restart file
Unrecognized entry in restart file.

Invalid flag in particle section of restart file
Unrecognized entry in restart file.

Invalid flag in peratom section of restart file
The format of this section of the file is not correct.

Invalid flag in surf section of restart file
Unrecognized entry in restart file.

Invalid image up vector
Up vector cannot be (0,0,0).

Invalid immediate variable
Syntax of immediate value is incorrect.

Invalid keyword in compute property/grid command
Self-explantory.

Invalid keyword in stats_style command
One or more specified keywords are not recognized.

Invalid math function in variable formula
Self-explanatory.

114

Invalid math/special function in variable formula
Self-explanatory.

Invalid point index in line
Self-explanatory.

Invalid point index in triangle
Self-explanatory.

Invalid react style
The choice of reaction style is unknown.

Invalid reaction coefficients in file
Self-explanatory.

Invalid reaction formula in file
Self-explanatory.

Invalid reaction style in file
Self-explanatory.

Invalid reaction type in file
Self-explanatory.

Invalid read_surf command
Self-explanatory.

Invalid read_surf geometry transformation for 2d simulation
Cannot perform a transformation that changes z cooridinates of points for a 2d simulation.

Invalid region style
The choice of region style is unknown.

Invalid replace values in compute reduce
Self-explanatory.

Invalid reuse of surface ID in read_surf command
Surface IDs must be unique.

Invalid run command N value
The number of timesteps must fit in a 32-bit integer. If you want to run for more steps than this, perform
multiple shorter runs.

Invalid run command start/stop value
Self-explanatory.

Invalid run command upto value
Self-explanatory.

Invalid special function in variable formula
Self-explanatory.

Invalid species ID in species file
Species IDs are limited to 15 characters.

Invalid stats keyword in variable formula
The keyword is not recognized.

Invalid surf_collide style
Self-explanatory.

Invalid syntax in variable formula
Self-explanatory.

Invalid use of library file() function
This function is called thru the library interface. This error should not occur. Contact the developers if it
does.

Invalid variable evaluation in variable formula
A variable used in a formula could not be evaluated.

Invalid variable in next command
Self-explanatory.

Invalid variable name
Variable name used in an input script line is invalid.

115

Invalid variable name in variable formula
Variable name is not recognized.

Invalid variable style in special function next
Only file-style or atomfile-style variables can be used with next().

Invalid variable style with next command
Variable styles equal and world cannot be used in a next command.

Ionization and recombination reactions are not yet implemented
This error conditions will be removed after those reaction styles are fully implemented.

Irregular comm recv buffer exceeds 2 GB
MPI does not support a communication buffer that exceeds a 4-byte integer in size.

Label wasn't found in input script
Self-explanatory.

Log of zero/negative value in variable formula
Self-explanatory.

MPI_SPARTA_BIGINT and bigint in spatype.h are not compatible
The size of the MPI datatype does not match the size of a bigint.

Migrate cells send buffer exceeds 2 GB
MPI does not support a communication buffer that exceeds a 4-byte integer in size.

Mismatched brackets in variable
Self-explanatory.

Mismatched compute in variable formula
A compute is referenced incorrectly or a compute that produces per-atom values is used in an equal-style
variable formula.

Mismatched fix in variable formula
A fix is referenced incorrectly or a fix that produces per-atom values is used in an equal-style variable
formula.

Mismatched variable in variable formula
A variable is referenced incorrectly or an atom-style variable that produces per-atom values is used in an
equal-style variable formula.

Mixture %s fractions exceed 1.0
The sum of fractions must not be > 1.0.

Mixture ID must be alphanumeric or underscore characters
Self-explanatory.

Mixture group ID must be alphanumeric or underscore characters
Self-explanatory.

Mixture species is not defined
One or more of the species ID is unknown.

Modulo 0 in variable formula
Self-explanatory.

More than one positive area with a negative area
SPARTA cannot determine which positive area the negative area is inside of, if a cell is so large that it
includes both positive and negative areas.

More than one positive volume with a negative volume
SPARTA cannot determine which positive volume the negative volume is inside of, if a cell is so large
that it includes both positive and negative volumes.

Must use -in switch with multiple partitions
A multi-partition simulation cannot read the input script from stdin. The -in command-line option must be
used to specify a file.

Next command must list all universe and uloop variables
This is to insure they stay in sync.

No dump grid attributes specified
Self-explanatory.

116

No dump particle attributes specified
Self-explanatory.

No dump surf attributes specified
Self-explanatory.

No positive areas in cell
This is an error when calculating how a 2d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

No positive volumes in cell
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Non digit character between brackets in variable
Self-explantory.

Number of groups in compute boundary mixture has changed
This mixture property cannot be changed after this compute command is issued.

Number of groups in compute grid mixture has changed
This mixture property cannot be changed after this compute command is issued.

Number of groups in compute sonine/grid mixture has changed
This mixture property cannot be changed after this compute command is issued.

Number of groups in compute surf mixture has changed
This mixture property cannot be changed after this compute command is issued.

Number of groups in compute tvib/grid mixture has changed
This mixture property cannot be changed after this compute command is issued.

Number of species in compute tvib/grid mixture has changed
This mixture property cannot be changed after this compute command is issued.

Numeric index is out of bounds
A command with an argument that specifies an integer or range of integers is using a value that is less
than 1 or greater than the maximum allowed limit.

Nz value in read_grid file must be 1 for a 2d simulation
Self-explanatory.

Only ylo boundary can be axi-symmetric
Self-explanatory. See the boundary doc page for more details.

Owned cells with unknown neighbors = %d
One or more grid cells have unknown neighbors which will prevent particles from moving correctly.
Please report the issue to the SPARTA developers.

Parent cell child missing
Hierarchical grid traversal failed. Please report the issue to the SPARTA developers.

Particle %d on proc %d hit inside of surf %d on step %ld
This error should not happen if particles start outside of physical objects. Please report the issue to the
SPARTA developers.

Particle %d,%d on proc %d is in invalid cell on timestep %ld
The particle is in a cell indexed by a value that is out-of-bounds for the cells owned by this processor.

Particle %d,%d on proc %d is in split cell on timestep %ld
This should not happend. The particle should be in one of the sub-cells of the split cell.

Particle %d,%d on proc %d is outside cell on timestep %ld
The particle's coordinates are not within the grid cell it is supposed to be in.

Particle vector in equal-style variable formula
Equal-style variables cannot use per-particle quantities.

Particle-style variable in equal-style variable formula
Equal-style variables cannot use per-particle quantities.

Partition numeric index is out of bounds
It must be an integer from 1 to the number of partitions.

Per-particle compute in equal-style variable formula

117

Equal-style variables cannot use per-particle quantities.
Per-particle fix in equal-style variable formula

Equal-style variables cannot use per-particle quantities.
Per-processor particle count is too big

No processor can have more particle than fit in a 32-bit integer, approximately 2 billion.
Point appears first in more than one CLINE

This is an error when calculating how a 2d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Point appears last in more than one CLINE
This is an error when calculating how a 2d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Power by 0 in variable formula
Self-explanatory.

Processor partitions are inconsistent
The total number of processors in all partitions must match the number of processors SPARTA is running
on.

React tce can only be used with collide vss
Self-explanatory.

Read_grid did not find parents section of grid file
Expected Parents section but did not find keyword.

Read_surf did not find lines section of surf file
Expected Lines section but did not find keyword.

Read_surf did not find points section of surf file
Expected Parents section but did not find keyword.

Read_surf did not find triangles section of surf file
Expected Triangles section but did not find keyword.

Region ID for dump custom does not exist
Self-explanatory.

Region intersect region ID does not exist
One or more of the region IDs specified by the region intersect command does not exist.

Region union region ID does not exist
One or more of the region IDs specified by the region union command does not exist.

Replacing a fix, but new style != old style
A fix ID can be used a 2nd time, but only if the style matches the previous fix. In this case it is assumed
you with to reset a fix's parameters. This error may mean you are mistakenly re-using a fix ID when you
do not intend to.

Request for unknown parameter from collide
VSS model does not have the parameter being requested.

Restart file byte ordering is not recognized
The file does not appear to be a SPARTA restart file since it doesn't contain a recognized byte-ordering
flag at the beginning.

Restart file byte ordering is swapped
The file was written on a machine with different byte-ordering than the machine you are reading it on.

Restart file incompatible with current version
This is probably because you are trying to read a file created with a version of SPARTA that is too old
compared to the current version.

Restart file is a multi-proc file
The file is inconsistent with the filename specified for it.

Restart file is not a multi-proc file
The file is inconsistent with the filename specified for it.

Restart variable returned a bad timestep
The variable must return a timestep greater than the current timestep.

118

Reuse of compute ID
A compute ID cannot be used twice.

Reuse of dump ID
A dump ID cannot be used twice.

Reuse of region ID
A region ID cannot be used twice.

Reuse of surf_collide ID
A surface collision model ID cannot be used more than once.

Run command before grid ghost cells are defined
Normally, ghost cells will be defined when the grid is created via the create_grid or read_grid commands.
However, if the global gridcut cutoff is set to a value >= 0.0, then ghost cells can only be defined if the
partiioning of cells to processors is clumped, not dispersed. See the fix balance command for an
explanation. Invoking the fix balance command with a clumped option will trigger ghost cells to be
defined.

Run command before grid is defined
Self-explanatory.

Run command start value is after start of run
Self-explanatory.

Run command stop value is before end of run
Self-explanatory.

Seed command has not been used
This command should appear near the beginning of your input script, before any random numbers are
needed by other commands.

Sending particle to self
This error should not occur. Please report the issue to the SPARTA developers.

Single area is negative, inverse donut
An inverse donut is a surface with a flow region interior to the donut hole and also exterior to the entire
donut. This means the flow regions are disconnected. SPARTA cannot correctly compute the flow area of
this kind of object.

Single volume is negative, inverse donut
An inverse donut is a surface with a flow region interior to the donut hole and also exterior to the entire
donut. This means the flow regions are disconnected. SPARTA cannot correctly compute the flow
volume of this kind of object.

Singlet BPG edge not on cell face
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Singlet CLINES point not on cell border
This is an error when calculating how a 2d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Small,big integers are not sized correctly
This error occurs whenthe sizes of smallint and bigint as defined in src/spatype.h are not what is expected.
Please report the issue to the SPARTA developers.

Smallint setting in spatype.h is invalid
It has to be the size of an integer.

Smallint setting in spatype.h is not compatible
Smallint size stored in restart file is not consistent with SPARTA version you are running.

Species %s did not appear in VSS parameter file
Self-explanatory.

Species ID does not appear in species file
Could not find the requested species in the specified file.

Species ID is already defined
Species IDs must be unique.

119

Sqrt of negative value in variable formula
Self-explanatory.

Stats and fix not computed at compatible times
Fixes generate values on specific timesteps. The stats output does not match these timesteps.

Stats compute array is accessed out-of-range
Self-explanatory.

Stats compute does not compute array
Self-explanatory.

Stats compute does not compute scalar
Self-explanatory.

Stats compute does not compute vector
Self-explanatory.

Stats compute vector is accessed out-of-range
Self-explanatory.

Stats every variable returned a bad timestep
The variable must return a timestep greater than the current timestep.

Stats fix array is accessed out-of-range
Self-explanatory.

Stats fix does not compute array
Self-explanatory.

Stats fix does not compute scalar
Self-explanatory.

Stats fix does not compute vector
Self-explanatory.

Stats fix vector is accessed out-of-range
Self-explanatory.

Stats variable cannot be indexed
A variable used as a stats keyword cannot be indexed. E.g. v_foo must be used, not v_foo100.

Stats variable is not equal-style variable
Only equal-style variables can be output with stats output, not particle-style or grid-style or surf-style
variables.

Stats_modify every variable returned a bad timestep
The variable must return a timestep greater than the current timestep.

Stats_modify int format does not contain d character
Self-explanatory.

Substitution for illegal variable
Input script line contained a variable that could not be substituted for.

Support for writing images in JPEG format not included
SPARTA was not built with the -DSPARTA_JPEG switch in the Makefile.

Support for writing images in PNG format not included
SPARTA was not built with the -DSPARTA_PNG switch in the Makefile.

Support for writing movies not included
SPARTA was not built with the -DSPARTA_FFMPEG switch in the Makefile

Surf file cannot contain lines for 3d simulation
Self-explanatory.

Surf file cannot contain triangles for 2d simulation
Self-explanatory.

Surf file does not contain lines
Required for a 2d simulation.

Surf file does not contain points
Self-explanatory.

Surf file does not contain triangles

120

Required for a 3d simulation.
Surf-style variables are not yet implemented

Self-explanatory.
Surf_collide ID must be alphanumeric or underscore characters

Self-explanatory.
Surf_collide diffuse rotation invalid for 2d

Specified rotation vector must be in z-direction.
Surf_collide diffuse variable is invalid style

It must be an equal-style variable.
Surf_collide diffuse variable name does not exist

Self-explanatory.
Surface check failed with %d duplicate edges

One or more edges appeared in more than 2 triangles.
Surface check failed with %d duplicate points

One or more points appeared in more than 2 lines.
Surface check failed with %d infinitely thin line pairs

Two adjacent lines have normals in opposite directions indicating the lines overlay each other.
Surface check failed with %d infinitely thin triangle pairs

Two adjacent triangles have normals in opposite directions indicating the triangles overlay each other.
Surface check failed with %d points on lines

One or more points are on a line they are not an end point of, which indicates an ill-formed surface.
Surface check failed with %d points on triangles

One or more points are on a triangle they are not an end point of, which indicates an ill-formed surface.
Surface check failed with %d unmatched edges

One or more edges did not appear in a triangle, or appeared only once and edge is not on surface of
simulation box.

Surface check failed with %d unmatched points
One or more points did not appear in a line, or appeared only once and point is not on surface of
simulation box.

Timestep must be >= 0
Reset_timestep cannot be used to set a negative timestep.

Too big a timestep
Reset_timestep timestep value must fit in a SPARTA big integer, as specified by the
-DSPARTA_SMALL, -DSPARTA_BIG, or -DSPARTA_BIGBIG options in the low-level Makefile used
to build SPARTA. See Section 2.2 of the manual for details.

Too many surfs in one cell
Use the global surfmax command to increase this max allowed number of surfs per grid cell.

Too many timesteps
The cummulative timesteps must fit in a SPARTA big integer, as as specified by the
-DSPARTA_SMALL, -DSPARTA_BIG, or -DSPARTA_BIGBIG options in the low-level Makefile used
to build SPARTA. See Section 2.2 of the manual for details.

Too much buffered per-proc info for dump
Number of dumped values per processor cannot exceed a small integer (~2 billion values).

Too much per-proc info for dump
Number of local atoms times number of columns must fit in a 32-bit integer for dump.

Unbalanced quotes in input line
No matching end double quote was found following a leading double quote.

Unexpected end of data file
SPARTA hit the end of the data file while attempting to read a section. Something is wrong with the
format of the data file.

Unexpected end of grid file
Self-explantory.

121

Unexpected end of surf file
Self-explanatory.

Units command after simulation box is defined
The units command cannot be used after a read_data, read_restart, or create_box command.

Universe/uloop variable count < # of partitions
A universe or uloop style variable must specify a number of values >= to the number of processor
partitions.

Unknown command: %s
The command is not known to SPARTA. Check the input script.

Unknown outcome in reaction
The specified type of the reaction is not encoded in the reaction style.

VSS parameters do not match current species
Species cannot be added after VSS colision file is read.

Variable ID in variable formula does not exist
Self-explanatory.

Variable evaluation before simulation box is defined
Cannot evaluate a compute or fix or atom-based value in a variable before the simulation has been setup.

Variable for dump every is invalid style
Only equal-style variables can be used.

Variable for dump image center is invalid style
Must be an equal-style variable.

Variable for dump image persp is invalid style
Must be an equal-style variable.

Variable for dump image phi is invalid style
Must be an equal-style variable.

Variable for dump image theta is invalid style
Must be an equal-style variable.

Variable for dump image zoom is invalid style
Must be an equal-style variable.

Variable for restart is invalid style
It must be an equal-style variable.

Variable for stats every is invalid style
It must be an equal-style variable.

Variable formula compute array is accessed out-of-range
Self-explanatory.

Variable formula compute vector is accessed out-of-range
Self-explanatory.

Variable formula fix array is accessed out-of-range
Self-explanatory.

Variable formula fix vector is accessed out-of-range
Self-explanatory.

Variable has circular dependency
A circular dependency is when variable "a" in used by variable "b" and variable "b" is also used by
varaible "a". Circular dependencies with longer chains of dependence are also not allowed.

Variable name between brackets must be alphanumeric or underscore characters
Self-explanatory.

Variable name for compute reduce does not exist
Self-explanatory.

Variable name for dump every does not exist
Self-explanatory.

Variable name for dump image center does not exist
Self-explanatory.

122

Variable name for dump image persp does not exist
Self-explanatory.

Variable name for dump image phi does not exist
Self-explanatory.

Variable name for dump image theta does not exist
Self-explanatory.

Variable name for dump image zoom does not exist
Self-explanatory.

Variable name for fix ave/grid does not exist
Self-explanatory.

Variable name for fix ave/surf does not exist
Self-explanatory.

Variable name for fix ave/time does not exist
Self-explanatory.

Variable name for restart does not exist
Self-explanatory.

Variable name for stats every does not exist
Self-explanatory.

Variable name must be alphanumeric or underscore characters
Self-explanatory.

Variable stats keyword cannot be used between runs
Stats keywords that refer to time (such as cpu, elapsed) do not make sense in between runs.

Vertex contains duplicate edge
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Vertex contains edge that doesn't point to it
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Vertex contains invalid edge
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Vertex has less than 3 edges
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

Vertex pointers to last edge are invalid
This is an error when calculating how a 3d grid is cut or split by surface elements. It should not normally
occur. Please report the issue to the SPARTA developers.

World variable count doesn't match # of partitions
A world-style variable must specify a number of values equal to the number of processor partitions.

Y cannot be periodic for axi-symmetric
Self-explanatory. See the boundary doc page for more details.

Z dimension must be periodic for 2d simulation
Self-explanatory.

Warnings:

%d particles were in wrong cells on timestep %ld
This is the total number of particles that are incorrectly matched to their grid cell.

Grid cell interior corner points marked as unknown = %d
Corner points of grid cells interior to the simulation domain were not all marked successfully as inside,
outside, or overlapping with surface elements. This should normally not happen, but does not affect
simulations.

123

More than one compute ke/particle
This may be inefficient since each such compute stores a vector of length equal to the number of particles.

Restart file used different # of processors
The restart file was written out by a SPARTA simulation running on a different number of processors.
This means you will likely want to re-balance the grid cells and particles across processors. This can be
done using the balance or fix balance commands.

Surface check found %d nearly infinitely thin line pairs
Two adjacent lines have normals in nearly opposite directions indicating the lines nearly overlay each
other.

Surface check found %d nearly infinitely thin triangle pairs
Two adjacent triangles have normals in nearly opposite directions indicating the triangles nearly overlay
each other.

Surface check found %d points nearly on lines
One or more points are nearly on a line they are not an end point of, which indicates an ill-formed
surface.

Surface check found %d points nearly on triangles
One or more points are nearly on a triangle they are not an end point of, which indicates an ill-formed
surface.

124

Previous Section - SPARTA WWW Site - SPARTA Documentation - SPARTA Commands - Next Section

13. Future and history

This section lists features we are planning to add to SPARTA, features of previous versions of SPARTA, and
features of other parallel molecular dynamics codes I've distributed.

13.1 Coming attractions
13.2 Past versions

13.1 Coming attractions

The developers">>wish list link on the SPARTA web page gives a list of features we are planning to add to
SPARTA in the future. Please contact the you are interested in contributing to the those developments or would
be a future user of that feature.

You can also send email to the developers if you want to add your wish to the list.

13.2 Past versions

Sandia's predecessor to SPARTA is a DSMC code called ICARUS. It was developed in the early 1990s by Tim
Bartel and Steve Plimpton. It was later modified and extended by Michael Gallis.

ICARUS is a 2d code, written in Fortran, which models the flow geometry around bodies with a collection of
adjoining body-fitted grid blocks. The geometry of the grid cells within in a single block is represented with
analytic equations, which allows for fast particle tracking.

Some details about ICARUS, including simulation snapshots and papers, are discussed on this page

Performance-wise ICARUS scaled quite well on several generations of parallel machines, and is still used by
Sandia researchers today. ICARUS was export-controlled software, and so was not distributed widely outside of
Sandia.

SPARTA development began in late 2011. In contrast to ICARUS, it is a 3d code, written in C++, and uses a
hierarchical Cartesian grid to track particles. Surfaces are embedded in the grid, which cuts and splits their flow
volumes.

The Authors link on the SPARTA web page gives a timeline of features added to the code since it's initial
open-source release.

125

https://sparta.github.io
https://sparta.github.io/future.html<A HREF =
https://sparta.github.io/authors.html
https://sjplimp.github.io
http://sjplimp.github.io/dsmc.html
https://sparta.github.io/history.html

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

adapt_grid command

Syntax:

adapt_grid group-ID action1 action2 style args ... keyword args ...

group-ID = group ID for which grid cells adaptation will be attempted on•
action1 = refine or coarsen•
action2 = coarsen or refine, optional•
style = particle or surf or value or random

particle args = rthresh cthresh
 rcount = threshold in particle count for refinment
 ccount = threshold in particle count for coarsening

surf arg = surfID ssize
 surfID = group ID for which surface elements to consider
 ssize = do not refine to create cells smaller than ssize (dist units)
 coarsen only if child cells are smaller than ssize (dist units)

value args = c_ID/c_ID[N]/f_ID/f_ID[N] rthresh cthresh
 c_ID = ID of a compute that calculates a per grid vector, use values from vector
 c_ID[N] = ID of a compute that calculates a per grid array, use values from Nth column of array
 f_ID = ID of a fix that calculates a per grid vector, use vector
 f_ID[N] = ID of a fix that calculates a per grid array, use Nth column of array
 rvalue = threshold in value for refinement
 cvalue = threshold in value for coarsening

random args = rfrac cfrac
 rfrac = fraction of child cells to refine
 cfrac = fraction of parent cells to coarsen

•

zero or more keyword/args pairs may be appended•
keyword = iterate or maxlevel or minlevel or thresh or combine or cells or region or dir

iterate arg = niterate
 niterate = number of iterations of action loop

maxlevel arg = Nmax
 Nmax = do not refine to create child cells at a level > Nmax

minlevel arg = Nmin
 Nmin = do not coarsen to create child cells at a level <Nmin

thresh args = rdecide cdecide
 rdecide = less or more = refine when value is less or more than rvalue
 cdecide = less or more = coarsen when value is less or more than cvalue

combine arg = sum or min or max = how to combine child values into parent value
cells args = Nx Ny Nz

 Nx,Ny,Nz = refine a cell into Nx by Ny by Nz child cells
region args = regID rflag

 regID = ID of region that cells must be inside to be eligible for adaptation
 rflag = all or one or center = what portion of grid cell must be inside

dir args = Sx Sy Sz
 Sx,Sy,Sz = vector components used with style surf to test surf elements

file arg = filename
 filename = name of file to write out with new parent grid info

Examples:

adapt_grid all refine particle 50 10
adapt_grid all coarsen particle 50 10
adapt_grid all refine coarsen particle 50 10
adapt_grid all refine surf all 0.15 iterate 1 dir 1 0 0
adapt_grid all refine coarsen value c_1[1] 5.0 10.0 iterate 2

•

126

https://sparta.github.io

Description:

This command perform a one-time adaptation of grid cells within a grid cell group, either by refinement or
coarsening or both. This command can be invoked as many times as desired, before or between simulation
runs. Grid adaptation can also be performed on-the-fly during a simulation by using the fix adapt command.

Refinement means splitting one child cell into multiple new child cells. The original child cell disappears,
conceptually it becomes a parent cell. Coarsening means combining all the child cells of a parent cell, so that
the child cells are deleted and the parent cell becomes a single new child cell. See Section howto 4.8 for a
description of the hierarchical grid used by SPARTA and definitions of child and parent cells.

Grid adaptation can be useful for adjusting the grid cell sizes to the current density distribution, or
mean-free-path of particles, or to other simulation attributes such as the presence of surface elements. A
well-adapted grid can improve accuracy of the simulation and/or reduce a simulation's computational cost.

Only grid cells in the grid group specified by group-ID are eligible for refinement. A parent grid cell is only
eligible for coarsening if all its child cells are in the specified grid group. See the group grid command for info
on how grid cells can be assigned to grid groups. Note that the grid group assignment is transferred to new
refined or coarsened cells, so that new cells remain eligible for adaptation if the adapt_grid command is
invoked again or successive adaptations are performed via the fix adapt command.

The action1 and action2 parameters determine whether refinement or coarsening is performed and in what
order. Action2 is optional. If not specified, only action1 is performed. Note that cells which are refined by
action1 are not eligible for subsequent coarsening by action2, during a single invocation of this command.
Likewise cells that are coarsened by action1 are not eligible for subsequent refinement by action2. This is also
true if the iterate keyword is used to loop over the two actions multiple times. Cells can be successivly refined
on each iteration, but will never be coarsened. Likewise cells can be successivly coarsensed, but will never be
refined. Of course any cell may be refined or coarsened later if the adapt_grid command is used again,
including on later timesteps via the fix adapt command.

Examples of 2d and 3d refined grids are shown here. The 3d simulation shows 2d planar cuts through the 3d
grid. Click on either image for a larger version.

The first step in a refinement action is to determine what child cells are eligible for refinement. Child cells that
are wholly inside a closed surface are not eligible. The maxlevel and region keywords also affect eligibility.
They are described below.

127

The first step in a coarsening action is to determine what parent cells are eligible for coarsening. Only parent
cells whose children are all child cells are eligible. If one or more of their children are also parent cells, then the
parent cell is a "grandparent" and is not eligible for coarsening. The minlevel and region keywords also affect
eligibility. They are described below.

The style parameter is then used to decide whether to refine or coarsen each eligible grid cell. The operation of
the different styles is described in the next section. Note that for refinement, the number of new child cells
created withing a single cell is set by the cells keyword which defaults to 2x2x2 for 3d models and 2x2x1 for
2d models.

Note that many of the style take an argument for both refinement and coarsening, e.g. rcount and ccount for
style particle. Both arguments must be specified, though one or the other will be ignored if the specified actions
do not include refinement or coarsening.

The particle style adapts based on the number of particles in a grid cell. For refinement, if the current number
(on this timestep) is more than rcount, the cell is refined. For coarsening, if the sum of the current number of
particles in all child cells of the parent cell is less than ccount, the parent cell is coarsened. Note that if you
wish to use time-averaged counts of particles in each cell you should use the value style with the ID of a fix
ave/grid command that time-averages particle counts from the compute grid command.

The surf style adapts only if a grid cell contains one or more surface elements in the specified surfID group.
The dir keyword can be used to exclude additional surface elements. For refinement, the cell is refined unless
the refinement will create child cells with any of their dimensions smaller than the specified ssize. For
coarsening, the parent cell is coarsened only if any of the child cell dimensions is smaller than the specified
ssize.

The value style uses values calculated by a compute or fix to decide whether to adapt each cell. The fix or
compute must calculate per-grid values as described in Section howto 4.4. If the compute or fix calculates a
vector of such values, it is specified as c_ID or f_ID. If it calculates an array of such values, it is specified as
c_ID[N] or f_ID[N] when N is the column of values to use, from 1 to Ncolumns.

For refinement, if the compute or fix value for the grid cell is "more" than rvalue, the cell is refined. For
coarsening, if the "sum" of the compute or fix values in all child cells of the parent cell is "less" than cvalue, the
parent cell is coarsened. The thresh keyword can be used to change the refinment or coarsening criteria to
"less" versus "more". Likewise the combine keyword can be used to change the "sum" of child cell values to be
a "min" or "max" operation.

Here is an example using particle count as calculated by the compute grid command as an adaptation criterion.
A cell will be refined if its count > 25, and a parent cell coarsened if the sum of its children cell counts < 10.

compute 1 grid all n nrho
adapt_grid refine coarsen value c_1[1] 25 10

The same thing could be accomplished with this command:

adapt_grid refine coarsen particle 25 10

These commands use a time-averaged particle count as an adaptation criterion in the same manner:

compute 1 grid all n nrho
fix 1 ave/grid 10 100 1000 c_1[1]
run 1000 # run to accumulate time averages
adapt_grid refine coarsen value f_1[1] 25 10

128

Here is an example using mean-free path (MFP) as calculated by the compute lambda/grid command as an
adaptation criterion. Note the use of "thresh less more" to refine when MFP is less than the specified threshold
(0.05).

compute 1 lambda/grid f_1[2] NULL N2 kall
adapt_grid refine coarsen value c_1[2] 0.05 0.1 &
 combine min thresh less more

The random style is provided for test and debugging purposes. For each cell eligible for adaptation, a uniform
random number RN bewteen 0.0 and 1.0 is generated. For refinement, the cell is refined if RN < rfrac, so that
approximately an rfrac fraction of the child cells are refined. Similarly, for coarsening, the parent cell is
coarsened if RN < cfrac, so that approximately a cfrac fraction of the parent cells are coarsened.

Various optional keywords can also be specified.

The iterate keyword determines how many times the action1 and action2 operations are looped over. The
default is once. If multiple iterations are used, cells can be recursively refined or coarsened. If no further
refinement or coarsening occurs on an iteration, the loop ends. Note that the compute used with style value will
be recalculated at each iteration to accurately reflect per grid values for the current grid.

The maxlevel keyword limits how far a grid cell can be refined. See Section howto 4.8 for a definition of the
level assigned to each parent and child cell. Child cells with a level >= Nmax are not eligible for refinement.
The default setting of Nmax = 0 means there is no limit on refinement.

The minlevel keyword limits how far a grid cell can be coarsened. See Section howto 4.8 for a definition of the
level assigned to each parent and child cell. Parent cells with a level < Nmin are not eligible for coarsening. The
default setting of Nmin = 1 means the only limit on coarsening is that the first level grid is preserved (never
coarsened to a single root cell). The specified Nmin must be >= 1.

The thresh keyword is only used by style value. It sets the comparison criterion for refinement as rdecide = less
or more. This means a child cell is refined if its compute or fix value is less or more than rvalue. Similarly, it
sets the comparison criterion for coarsening as cdecide = less or more. This means a parent cell is coarsened if
the compute or fix value accumulated from the compute or fix values of its children is less or more than cvalue.

The combine keyword is only used by style value. It determines how the compute or fix value for a parent cell
is accumulated from the compute or fix values of all its children. If the setting is sum, the child values are
summed. If it is min or max, the parent value is the minimum or maximum of all the child values.

The cells keyword determines how many new child cells are created when a single grid cell is refined. Nx by
Ny by Nz new child cells are created. Nz must be one for 2d. Any of Nx, Ny, Nz may have a value of 1, but
they cannot all be 1.

The region keyword can be used to limit which grid cells are eligible for adapation. It applies to both child cells
for refinment and parent cells for coarsening. The ID of the geometric region is speficied as regID. See the
region command for details on what kind of geometric regions can be defined. Note that the side option for the
region command can be used to define whether the inside or outside of the geometric region is considered to be
"in" the region.

The grid cell must be in the region to be eligible for adaptation. The rflag setting determines how a grid cell is
judged to be in the region or not. For rflag = one, it is in the region if any of its corner points (4 for 2d, 8 for 3d)
is in the region. For rflag = all, all its corner points must be in the region. For rflag = center, the center point of
the grid cell must be in the region.

129

The dir keyword is only used by the style surf. The Sx,Sy,Sz settings are components of a vector. It's length
does not matter, just its direction. Only surface elements whose normal is opposed to the vector direction (in a
dot product sense) are eligible surfaces for the adapation procedure described above for the surf style. This can
be useful to exclude refinement around surface elements that are not facing "upwind" with respect to the flow
direction of the particles. This is accomplished by setting Sx,Sy,Sz to the flow direction. If Sy,Sy,Sz = (0,0,0),
which is the default, then no surface elements are excluded.

The file keyword triggers output of the adapted grid to the specified filename. The format of the file is the same
as that created by the write_grid command, which is a list of parent cells. The file can be read in by a
subsequent simulation to define a grid, or used by visualization or other post-procesing tools. Note that no file
is written if no grid cells are refined or coarsened.

If the filename contains a "*" wildcard character, then the "*" is replaced by the current timestep. This is useful
for the fix adapt command, if you wish to write out multiple grid files, each time the grid iadapts.

If the grid is partitioned across processors in a "clumped" manner before this command is invoked, it will still
be clumped by processor after the adaptation. Likewise if it is not clumped before, it will remain un-clumped
after adaptation. See Section howto 4.8 for a description clumped and unclumped grids.

If you want the grid partitioning (and their particles) to be rebalanced across processors after grid adaptation,
you can use the balance_grid command after this command.

Restrictions:

This command can only be used after the grid has been created by the create_grid, read_grid, or read_restart
commands.

Currently a fix cannot be used with style value for iterate > 1. This is because the per-grid cell values
accumulated by the fix are not interpolated to new grid cells so that the fix can be re-evaluated multiple times.
In the future we may revove this restriction.

Currently, if there are custom attributes defined for grid cells, grid adaptation does not set new values for new
grid cells created when either refinement or coarsening takes place. The new cells will have zero values for
their attributes. This is because there is no simple way to determine how new attribute values should be
computed. This may be changed in the future.

Related commands:

fix adapt, balance_grid

Default:

The keyword defaults are iterate = 1, minlevel = 1, maxlevel = 0, thresh = more for rdecide and less for
cdecide, combine = sum, cells = 2 2 2 for 3d and 2 2 1 for 2d, no region, dir = 0 0 0, and no file.

130

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

balance_grid command

Syntax:

balance_grid style args ...

style = none or stride or clump or block or random or proc or rcb

none args = none
stride args = xyz or xzy or yxz or yzx or zxy or zyx
clump args = xyz or xzy or yxz or yzx or zxy or zyx
block args = Px Py Pz

 Px,Py,Pz = # of processors in each dimension
random args = none
proc args = none
rcb args = weight

 weight = cell or part or time

•

zero or more keyword/value(s) pairs may be appended•
keyword = axes or flip

axes value = dims
 dims = string with any of "x", "y", or "z" characters in it

flip value = yes or no

•

Examples:

balance_grid block * * *
balance_grid block * 4 *
balance_grid clump yxz
balance_grid random
balance_grid rcb part
balance_grid rcb part axes xz

Description:

This command adjusts the assignment of grid cells and their particles to processors, to attempt to balance the
computational cost (load) evenly across processors. The load balancing is "static" in the sense that this command
performs the balancing once, before or between simulations. The assignments will remain static during the
subsequent run. To perform "dynamic" balancing, see the fix balance command, which can adjust the assignemt
of grid cells to processors on-the-fly during a run.

After grid cells have been assigned, they are migrated to new owning processors, along with any particles they
own or other per-cell attributes stored by fixes. The internal data structures within SPARTA for grid cells and
particles are re-initialized with the new decomposition.

This command can be used immediately after the grid is created, via the create_grid or read_restart commands. In
the former case balance_grid can be used to partition the grid in a more desirable manner than the default creation
options allow for. In the latter case, balance grid can be used to change the somewhat random assignment of grid
cells to processors that will be made if the restart file is read by a different number of processors than it was
written by.

This command can also be used once particles have been created, or a simulation has come to equilibrium with a
spatially varying density distribution of particles, so that the computational load is more evenly balanced across

131

https://sparta.github.io

processors.

The details of how child cells are assigned to processors by the various options of this command are described
below. The cells assigned to each processor will either be "clumped" or "dispersed".

The clump and block and rcb styles will produce clumped assignments of child cells to each processor. This
means each processor's cells will be geometrically compact. The stride and random and proc styles will produce
dispersed assignments of child cells to each processor.

IMPORTANT NOTE: See Section 6.8 of the manual for an explanation of clumped and dispersed grid cell
assignments and their relative performance trade-offs.

The none style will not change the assignment of grid cells to processors. However it will update the internal data
structures within SPARTA that store ghost cell information on each processor for cells owned by other
processors. This is useful if the global gridcut command was used after grid cells were already defined. That
command erases ghost cell information stored by processors, which then needs to be re-generated before a
simulation is run. Using the balance_grid none command will re-generate the ghost cell information.

The stride, clump, and block styles can only be used if the grid is "uniform". The grid in SPARTA is hierarchical
with one or more levels, as defined by the create_grid or read_grid commlands. If the parent cell of every grid cell
is at the same level of the hierarchy, then for purposes of this command the grid is uniform, meaning the
collection of grid cells effectively form a uniform fine grid overlaying the entire simulation domain.

The meaning of the stride, clump, and block styles is exactly the same as when they are used as keywords with the
create_grid command. See its doc page for details.

The random style means that each grid cell will be assigned randomly to one of the processors. Note that in this
case every processor will typically not be assigned the exact same number of cells.

The proc style means that each processor will choose a random processor to assign its first grid cell to. It will then
loop over its grid cells and assign each to consecutive processors, wrapping around the enumeration of processors
if necessary. Note that in this case every processor will typically not be assigned exactly the same number of cells.

The rcb style uses a recursive coordinate bisectioning (RCB) algorithm to assign spatially-compact clumps of grid
cells to processors. Each grid cell has a "weight" in this algorithm so that each processor is assigned an equal total
weight of grid cells, as nearly as possible.

If the weight argument is specified as cell, then the weight for each grid cell is 1.0, so that each processor will end
up with an equal number of grid cells.

If the weight argument is specified as part, then the weight for each grid cell is the number of particles it currently
owns, so that each processor will end up with an equal number of particles.

If the weight argument is specified as time, then timers are used to estimate the cost of each grid cell. The cost
from the timers is given on a per processor basis, and then assigned to grid cells by weighting by the relative
number of particles in the grid cells. If no timing data has yet been collected at the point in a script where this
command is issued, a cell style weight will be used instead of time. A small warmup run (for example 100
timesteps) can be used before the balance command so that timer data is available. The timers used for balancing
tally time from the move, sort, collide, and modify portions of each timestep.

IMPORTANT NOTE: The adapt_grid command zeros out timing data, so the weight time option is not available
immediatly after this command.

132

IMPORTANT NOTE: The coarsening option in fix_adapt may shift cells to different processors, which makes the
accumulated timing data for the weight time option less accurate when load balancing is performed immediately
after this command.

Here is an example of an RCB partitioning for 24 processors, of a 2d hierarchical grid with 5 levels, refined
around a tilted ellipsoidal surface object (outlined in pink). This is for a weight cell setting, yielding an equal
number of grid cells per processor. Each processor is assigned a different color of grid cells. (Note that less colors
than processors were used, so the disjoint yellow cells actually belong to three different processors). This is an
example of a clumped distribution where each processor's assigned cells can be compactly bounded by a
rectangle. Click for a larger version of the image.

The optional keywords axes and flip only apply to the rcb style. Otherwise they are ignored.

The axes keyword allows limiting the partitioning created by the RCB algorithm to a subset of dimensions. The
default is to allow cuts in all dimension, e.g. x,y,z for 3d simulations. The dims value is a string with 1, 2, or 3
characters. The characters must be one of "x", "y", or "z". They can be in any order and must be unique. For
example, in 3d, a dims = xz would only partition the 3d grid only in the x and z dimensions.

The flip keyword is useful for debugging. If it is set to yes then each time an RCB partitioning is done, the
coordinates of grid cells will (internally only) undergo a sign flip to insure that the new owner of each grid cell is
a different processor than the previous owner, at least when more than a few processors are used. This will insure
all particle and grid data moves to new processors, fully exercising the rebalancing code.

Restrictions:

This command can only be used after the grid has been created by the create_grid, read_grid, or read_restart
commands.

This command also initializes various options in SPARTA before performing the balancing. This is so that grid
cells are ready to migrate to new processors. Thus if an error is flagged, e.g. that a simulation box boundary

133

condition is not yet assigned, that operation needs to be performed in the input script before balancing can be
performed.

Related commands:

fix balance

Default:

The default settings for the optional keywords are axes = xyz, flip = no.

134

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

bound_modify command

Syntax:

bound_modify wall1 wall2 ... keyword value ...

wall1,wall2,... = xlo or xhi or ylo or yhi or zlo or zhi•
one or more keyword/value pairs may be listed

keywords = collide or react
collide value = sc-ID

 sc-ID = ID of a surface collision model
react value = sr-ID

 sr-ID = ID of a surface reaction model or none

•

Examples:

bound_modify yhi collide 1 react 2
bound_modify zlo zhi collide hotwall

Description:

Set parameters for one or more of the boundaries of the global simulation box. Any of the 6 faces can be selected
via the list of wall settings.

The collide keyword can only be used when the boundary is of type "s", for surface, as set by the boundary
command. This keyword assigns a surface collision model to the boundary, as defined by the surf_collide
command. The ID of the surface collision model is specified as sc-ID, which is the ID used in the surf_collide
command.

The effect of this keyword is that particle collisions with the specified boundaries will be computed by the
specified surface collision model.

The react keyword can only be used when the boundary is of type "s", for surface, as set by the boundary
command. This keyword assigns a surface reaction model to the boundary, as defined by the surf_react command.
The ID of the surface reaction model is specified as sr-ID, which is the ID used in the surf_react command. If an
sr-ID of none is used then surface reactions are turned off.

The effect of this keyword is that particle collisions with the specified boundaries will induce reactions which are
computed by the specified surface reaction model.

Restrictions:

For 2d simulations, the zlo and zhi boundaries cannot be modified by this command, since they are always
periodic.

All boundaries of type "s" must be assigned to a surface collision model via the collide keyword before a
simlulation can be performed. Using a surface reaction model is optional.

Related commands:

135

https://sparta.github.io

boundary, surf_modify

Default:

The default for boundary reactions is none.

136

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

boundary command

Syntax:

boundary x y z

x,y,z = o or p or r or a or s, one or two letters

o is outflow
p is periodic
r is specular reflection
a is axi-symmetric
s is treat boundary as a surface

•

Examples:

boundary o p p
boundary os o o
boundary r p rs

Description:

Set the style of boundaries for the global simulation box in each of the x, y, z dimensions. A single letter assigns
the same style to both the lower and upper face of the box in that dimension. Two letters assigns the first style to
the lower face and the second style to the upper face. The size of the simulation box is set by the create_box
command.

The boundary style determines how particles exiting the box are handled.

Style o means an outflow boundary, so that particles freely exit the simulation.

Style p means the box is periodic, so that particles exit one end of the box and re-enter the other end. The p style
must be applied to both faces of a dimension.

Style r means a specularly reflecting boundary. Particles that cross this boundary have their velocity reversed so
as to re-enter the box. The new velocity is used to advect the particle for the reminder of the timestep following
the collision.

Style a means an axi-symmetric boundary, which can only be used for the lower y-dimension boundary in a 2d
simulation. The simulation box must also have a value of 0.0 for ylo; see the create_box command. This
effectively means that the x-axis is the axis of symmetry. The upper y-dimension boundary cannot be periodic.

Style s means the boundary is treated as a surface which allows the particle-surface interaction to be treated in a
variety of ways via the options provided by the surf_collide command. This is effectively the same as when a
particle collides with a triangulated surface read in and setup by the read_surf command.

For style s, the boundary face must also be assigned to a surface collision model defined by the surf_collide
command. The assignment of the boundary to the model is done via the bound_modify command.

Restrictions:

This command must be used before the grid is defined, e.g. by a create_grid command.

137

https://sparta.github.io

For 2d simulations, the z dimension must be periodic.

Related commands:

bound_modify, surf_collide

Default:

boundary p p p

138

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

clear command

Syntax:

clear

Examples:

(commands for 1st simulation)
clear
(commands for 2nd simulation)

Description:

This command deletes all atoms, restores all settings to their default values, and frees all memory allocated by
SPARTA. Once a clear command has been executed, it is almost as if SPARTA were starting over, with only the
exceptions noted below. This command enables multiple jobs to be run sequentially from one input script.

These settings are not affected by a clear command: the working directory (shell command), log file status (log
command), echo status (echo command), and input script variables (variable command).

Restrictions: none

Related commands: none

Default: none

139

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

collide command

Syntax:

collide style args keyword value ...

style = none or vss•
args = arguments for that style

none args = none
vss args = mix-ID file

 mix-ID = ID of mixture to use for group definitions
 file = filename that lists species with their VSS model parameters

vss/kk args = mix-ID file
 mix-ID = ID of mixture to use for group definitions
 file = filename that lists species with their VSS model parameters

•

zero or more keyword/value pairs may be appended•
keyword = relax

relax value = constant or variable

•

Examples:

collide none
collide vss all ../data/air.vss
collide vss species all.vss relax variable

Description:

Define what style of particle-particle collisions will be performed by SPARTA each timestep. If collisions are
performed, particles are sorted into grid cells every timestep and the appropriate collision model is invoked on a
per-grid-cell basis. Collisions alter the velocity of participating particles as well as their rotational and vibrational
energies. The rotational and vibrational properties of each species are set in the file read by the species command.

The collision style determines how many pairs of particles are considered for collisions, the criteria for which
collisions actually occurs, and the outcome of individual collision, which alters the velocities of the two particles.
If chemistry is enabled, via the react command, particles involved in collisions may also change species, or a
particle may be deleted, or a new particle created. The collide_modify command can also be used to alter aspects
of how collisions are performed. For example, it can be used to turn on/off the tracking of vibrational energy and
its exchange in collisions.

A mix-ID argument is specified for each collision style. It must contain all the species defined for use by the
simulation, via the species command. The group definitions in the mixture assign one or more particle species to
each group. These groupings are used to determine how pairs of particles are chosen to collide with each other, in
the following manner.

Consider a cell with N particles and a mixture with M groups. Based on its species, each particle is assigned to
one of the M groups. Each unique pair of groups is considered, including each group paired with itself. For each
pair of groups a value Nattempt (see equation 11.3 in (Bird94)) is calculated which is the number of collisions to
attempt. This is a function of N1 and N2 (the number of particles in each group), the grid cell volume, and other
parameters of the collision style.

140

https://sparta.github.io

For each collision attempt, a random pair of particles is selected, with one particle from each group. Whether the
collision occurs or not is a function of the relative velocities of the two particles, their respective species, and
other parameters of the collision style; see equation 11.4 in (Bird94).

NOTE: If you are using the ambipolar approximation with charged species, as described in Section 6.11, and you
have used the collide_modify ambipolar yes command to enable ambipolar collisions (not required), and you are
using a mixture ID with multiple groups, then the ambipolar electron species must be in a group by itself.

The none style means that no particle-particle collisions will be performed, i.e. the simulation models
free-molecular flow.

The vss style implements the Variable Soft Sphere (VSS) model for collisions. As discussed below, with
appropriate parameter choices, it can also compute the Variable Hard Sphere (VHS) model and the Hard Sphere
(HS) model. See chapters 2.6 and 2.7 in (Bird94) for details.

In DSMC, the variable-soft-sphere (VSS) interaction of Koura and Matsumoto and the variable-hard-sphere
(VHS) interaction of Bird are used to approximate molecular interactions. Both models yield transport properties
proportional to a power (omega) of the gas temperature. This temperature dependence of the transport properties
is similar to the Inverse Power Law model (IPL) for which Chapman-Enskog theory provides closed form
solutions for the transport properties.

Both VSS and VHS interactions define parameters diam = molecular diameter, which is a function of the
molecular speed, and alpha = angular-scattering parameter, which relates the scattering angle to the impact
parameter. Setting alpha = 1 produces isotropic (hard sphere) interactions, which converts the VSS model into a
VHS model.

The file argument is for a collision data file which contains definitions of VSS model parameters for some number
of species. Example files are included in the data directory of the SPARTA distribution, with a "*.css" suffix. The
file can contain species not used by this simulation; they will simply be ignored. All species currently defined by
the simulation must be present in the file.

The format of the file depends of the setting of the optional relax keyword, as explained below. Comments or
blank lines are allowed in the file. Comment lines start with a "#" character. All other lines must have the
following format with parameters separated by whitespace.

If the relax keyword is specified as constant, which is the default, then each line has 4 parameters following the
species ID:

species-ID diam omega tref alpha

The species-ID is a string that will be matched to one of the species defined by the simulation, via the species
command. The meaning of additional properties is as follows:

diam = VHS or VSS diameter of particle (distance units)•
omega = temperature-dependence of viscosity (unitless)•
tref = reference temperature (temperature units)•
alpha = angular scattering parameter (unitless)•

The methodology for deriving VSS/VHS parameters from these properties is explained in Chapter 3 of (Bird94).
Parameter values for the most common gases are given in Appendix A of the same book. These values are based
on the first-order approximation of the Chapman-Enskog theory. Infinite-order parameters are described in
(Gallis04).

141

In the constant case rotational and vibrational relaxation during a collision is treated in the same constant manner
for every collision, using the rotational and vibrational relaxation numbers from the species data file, as read by
the species command.

If the relax keyword is specified as variable, then each line has 8 parameters following the species ID:

species-ID diam omega tref alpha Zrotinf T* C1 C2

The first 4 parameters are the same as above. Parameters 5 and 6 affect rotational relaxation; parameters 7 and 8
affect vibrational relaxation. In this case the rotational and vibrational relaxation during a collision is treated as a
variable and is computed for each collision. This calculation is only performed for polyatomic species, using
equations A5 and A6 on pages 413 and 414 in (Bird94), with the modification that the collision temperature is
calculated using energy in the internal mode as well as the translational mode. Zrotinf and T* are parameters in
the numerator and denominator of eq A5. C1 and C2 are in eq A6. The units of these parameters is as follows:

Zrotinf (unitless)•
T* (temperature units)•
C1 (temperature units)•
C2 (temperature^(1/3) units)•

Note that a collision data file with the 4 extra relaxation parameters (per species) can be used when the relax
keyword is specified as constant. In that case, the extra parameters are simply ignored.

For interspecies collisions, the collision parameters default to the average of the parameters for each involved
species. To override this default, lines specific to each interspecies pair can be added anywhere in the collision
data file. The format for these lines is as described above, with the addition of a second species name. For
example, with the relax keyword specified, an interspecies collision line would contain the following information
for collisions between species-ID and species-ID1:

species-ID species-ID1 diam omega tref alpha Zrotinf T* C1 C2

In an interspecies line, a specific parameter can be returned to the default behavior (an average) by making it
negative. For example, to override only omega for the above case, the line could appear as follows:

species-ID species-ID1 -1 omega -1 -1 -1 -1 -1 -1

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions: none

Related commands:

142

collide_modify, mixture, react

Default:

Style = none is the default (no collisions). If the vss style is specified, then relax = constant is the default.

(Koura92) K. Koura and H. Matsumoto, "Variable soft sphere molecular model for air species," Phys Fluids A, 4,
1083 (1992).

(Bird94) G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford
(1994).

(Gallis04) M. A. Gallis, J. R. Torczynski, and D. J. Rader, "Molecular gas dynamics observations of
Chapman-Enskog behavior and departures therefrom in nonequilibrium gases," Phys Rev E, 69, 042201 (2004).

143

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

collide_modify command

Syntax:

collide_modify keyword values ...

one or more keyword/value pairs may be listed•
keywords = vremax or remain or ambipolar or nearcp or rotate or vibrate

vremax values = Nevery startflag
 Nevery = zero vremax every this many timesteps
 startflag = yes or no = zero vremax at start of every run

remain value = yes or no = hold remaining fraction of collisions over to next timestep
nearcp values = choice Nlimit

 choice = yes or no to turn on/off near collision partners
 Nlimit = max # of attempts made to find a collision partner

ambipolar value = no or yes
rotate value = no or smooth
vibrate value = no or smooth or discrete

•

Examples:

collide_modify vremax 1000 yes
collide_modify vremax 0 no remain no
collide_modify ambipolar yes

Description:

Set parameters that affect how collisions are performed.

The vremax keyword affects how often the Vremax parameter, for collision frequency is re-zeroed during the
simulation. This parameter is stored for each grid cell and each pair of collision groups (groups are described by
the collide command).

The value of Vremax affects how many events are attempted in each grid cell for a pair of groups, and thus the
overall time spent performing collisions. Vremax is continuously set to the largest difference in velocity between
a pair of colliding particles. The larger Vremax grows, the more collisions are attempted for the grid cell on each
timestep, though this does not affect the number of collisions actually performed. Thus if Vremax grows large,
collisions become less efficient, though still accurate.

For non-equilibrium flows, it is typically desirable to reset Vremax to zero fairly frequently (e.g. every 1000
steps) so that it does not become large, due to anomolously fast moving particles. In contrast, when a system is at
equilibrium, it is typically desirable to not reset Vremax to zero since it will also stay roughly constant.

If Nevery is specified as 0, Vremax is not zeroed during a run. Otherwise Vremax is zeroed on timesteps that are a
multiple of Nevery. Additionally, if startflag is set to yes, Vremax is zeroed at the start of every run. If it is set to
no, it is not.

The remain keyword affects how the number of attempted collisions for each grid cell is calculated each timestep.
If the value is set to yes, then any fractional collision count (for each grid cell and pair of grgroups) is carried over
to the next timestep. E.g. if the computed collision count is 7.3, then 7 attempts are made on this timestep, and 0.3
are carried over to the next timestep, to be added to the computed collision count for that step. If the value is set to

144

https://sparta.github.io

no, then no carry-over is made. Instead, in this example, 7 attempts are made and an 8th attempt is made
conditionally with a probability of 0.3, using a random number.

The nearcp keyword stands for "near collision partner" and affects how collision partners are selected. If no is
specified, which is the default, then collision partner pairs are selected randomly from all particles in the grid cell.
In this case the Nlimit parameter is ignored, though it must still be specfied.

If yes is specified, then up to Nlimit collision partners are considered for each collision. The first partner I is
chosen randomly from all particles in the grid cell. A distance R that particle I moves in that timestep is
calculated, based on its velocity. Nlimit possible collision partners J are examined, starting at a random J. If one of
them is within a distance R of particle I, it is immediately selected as the collision partner. If none of the Nlimit
particles are within a distance R, the closest J particle to I is selected. An exception to these rules is that a particle
J is not considered for a collision if the I,J pair were the most recent collision partners (in the current timestep) for
each other. The convergence properties of this near-neighbor algorithm are described in (Gallis11). Note that
choosing Nlimit judiciously will avoid costly searches when there are large numbers of particles in some or all
grid cells.

If the ambipolar keyword is set to yes, then collisions within a grid cell with use the ambipolar approximation.
This requires use of the fix ambipolar command to define which species is an electron and which species are ions.
There can be many of the latter. When collisions within a single grid cell are performed, each ambipolar ion is
split into two particles, the ion and an associated electron. Collisions between the augmented set of particles are
calculated. Ion/electron chemistry can also occur if the react command has been used to read a file of reactions
that include such reactions. See the react command doc page. After all collisions in the grid cell have been
computed, there is still a one-to-one correspondence between ambipolar ions and electron, and each pair is
recombined into a single ambipolar particle.

The rotate keyword determines how rotational energy is treated in particle collisions and stored by particles. If the
value is set to no, then rotational energy is not tracked; every particle's rotational energy is 0.0. If the value is set
to smooth, a particle's rotational energy is a single continuous value.

The vibrate keyword determines how vibrational energy is treated in particle collisions and stored by particles. If
the value is set to no, then vibrational energy is not tracked; every particle's vibrational energy is 0.0. If the value
is set to smooth, a particle's vibrational energy is a single continuous value. If the value is set to discrete, each
particle's vibrational energy is set to discrete values, namely multiples of kT where k = the Boltzmann constant
and T is one or more characteristic vibrational temperatures set for the particle species.

Note that in the discrete case, if any species are defined that have 4,6,8 vibrational degrees of freedom, which
correspond to 2,3,4 vibrational modes, then the species command must be used with its optional vibfile keyword
to set the vibrational info (temperature, relaxation number, degeneracy) for those species.

Also note that if any such species are defined (with more than one vibrational mode, then use of the discrete
option also requires the fix vibmode command be used to allocate storage for the per-particle mode values.

Restrictions: none

Related commands:

collide

Default:

The option defaults are vremax = (0,yes), remain = yes, ambipolar no, nearcp no, rotate smooth, and vibrate = no.

145

(Gallis11) M. A. Gallis, J. R. Torczynski, "Effect of Collision-Partner Selection Schemes on the Accuracy and
Efficiency of the Direct Simulation Monte Carlo Method," International Journal for Numerical Methods in Fluids,
67(8):1057-1072. DOI:10.1002/fld.2409 (2011).

146

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute command

Syntax:

compute ID style args

ID = user-assigned name for the computation•
style = one of a list of possible style names (see below)•
args = arguments used by a particular style•

Examples:

compute 1 ke/particle
compute myGrid all n mass u usq temp

Description:

Define a computation that will be performed on a collection of particles or grid cells or surface elements.
Quantities calculated by a compute are instantaneous values, meaning they are calculated from information about
the current timestep. Examples include calculation of the system temperature or counting collisions of particles
with surface elements. Code for new computes can be added to SPARTA; see Section 10 of the manual for
details.

Note that defining a compute does not perform a computation. Instead computes are invoked by other SPARTA
commands as needed, e.g. to generate statistics or dump file output. See Section 4.4 for a summary of various
SPARTA output options, many of which involve computes.

The ID for a compute is used to identify the compute in other commands. Each compute ID must be unique. The
ID can only contain alphanumeric characters and underscores. You can specify multiple computees of the same
style so long as they have different IDs. A compute can be deleted with the uncompute command, after which its
ID can be re-used.

Each compute style has its own doc page which describes its arguments and what it does. Here is an alphabetic
list of compute styles available in SPARTA:

boundary - various quantities on each global boundary•
count - particle counts for species and mixtures and mixture groups•
distsurf/grid - distance from grid cells to surface•
dt/grid - optimal timestep per grid cell•
eflux/grid - energy flux density per grid cell•
fft/grid - FFTs across grid cells•
grid - various per grid cell quantities•
isurf/grid - various implicit surface element quantities•
ke/particle - temperature per particle•
lambda/grid - mean-free path per grid cell•
pflux/grid - momentum flux density per grid cell•
property/grid - per grid cell properties•
property/surf - per surface element properties•
react/boundary - reaction stats on global boundary•
react/surf = reaction stats for explicit surfs•

147

https://sparta.github.io

react/isurf/grid - reactions stats for implicit surfs•
reduce - reduce vectors to scalars•
sonine/grid - Sonine moments per grid cell•
surf - various explicit surface element quantities•
thermal/grid - thermal temperature per grid cell•
temp - temperature of particles•
tvib/grid - vibrational temperature per grid cell•

There are also additional accelerated compute styles included in the SPARTA distribution for faster performance
on specific hardware. The list of these with links to the individual styles are given in the pair section of this page.

Computes calculate one of four styles of quantities: global, per-particle, per-grid, or per-surf. A global quantity is
one or more system-wide values, e.g. the temperature of the system. A per-particle quantity is one or more values
per particle, e.g. the kinetic energy of each particle. A per-grid quantity is one or more values per grid cell. A
per-surf quantity is one or more values per surface element.

Global, per-particle, per-grid, and per-surf quantities each come in two forms: a single scalar value or a vector of
values. Additionaly, global quantities can also be a 2d array of values. The doc page for each compute describes
the style and kind of values it produces, e.g. a per-particle vector. Some computes can produce more than one
form of a single style, e.g. a global scalar and a global vector.

When a compute quantity is accessed, as in many of the output commands discussed below, it can be referenced
via the following bracket notation, where ID is the ID of the compute:

c_ID entire scalar, vector, or array
c_ID[I] one element of vector, one column of array
c_ID[I][J] one element of array

In other words, using one bracket reduces the dimension of the quantity once (vector -> scalar, array -> vector).
Using two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar compute
values as input can also process elements of a vector or array.

Note that commands and variables which use compute quantities typically do not allow for all kinds, e.g. a
command may require a vector of values, not a scalar. This means there is no ambiguity about referring to a
compute quantity as f_ID even if it produces, for example, both a scalar and vector. The doc pages for various
commands explain the details.

The values generated by a compute can be used in several ways:

Global values can be output via the stats_style command. Or the values can be referenced in a variable
equal or variable atom command.

•

Per-particle values can be output via the dump particle command. Or the values can be referenced in a
particle-style variable.

•

Per-grid values can be output via the dump grid command. They can be time-averaged via the fix ave/grid
command.

•

Per-surf values can be output via the dump surf command. They can be time-averaged via the fix ave/surf
command.

•

Restrictions: none

Related commands:

148

uncompute

Default: none

149

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute boundary command

Syntax:

compute ID boundary mix-ID value1 value2 ...

compute ID boundary/kk mix-ID value1 value2 ...

ID is documented in compute command•
boundary = style name of this compute command•
mix-ID = mixture ID to perform calculation on•
one or more values can be appended•
value = n or nwt or nflux or mflux or press or shx or shy or shz or ke or erot or evib or etot

 n = count of particles hitting boundary
 nwt = weighted count of particles hitting boundary
 nflux = flux of particles on boundary
 mflux = flux of mass on boundary
 press = magnitude of normal pressure on boundary
 shx,shy,shz = components of shear stress on boundary
 ke = flux of particle kinetic energy on boundary
 erot = flux of particle rotational energy on boundary
 evib = flux of particle vibrational energy on boundary
 etot = flux of particle total energy on boundary

•

Examples:

compute 1 boundary all n press eng
compute mine boundary species press shx shy shz

These commands will print values for the current timestep for the xlo and xhi boundaryies, as part of statistical
output:

compute 1 boundary all n press
stats_style step np c_1[1][1] c_1[1][2] c_1[2][1] c_1[2][2]

These commands will dump time averages for each species and each boundary to a file every 1000 steps:

compute 1 boundary species n press shx shy shz
fix 1 ave/time 10 100 1000 c_1[*] mode vector file tmp.boundary

Description:

Define a computation that calculates one or more values for each boundary (i.e. face) of the simulation box, based
on the particles that cross or collide with the boundary. The values are summed for each group of species in the
specified mixture. See the mixture command for how a set of species can be partitioned into groups.

Note that depending on the settings for the boundary command, when a particle collides with a boundary, it can
exit the simulation box (outflow), re-enter from the other side (periodic), reflect specularly from the boundary, or
interact with it as if it were a surface. In the surface case, the incident particle may bounce off (possibly as a
different species), be captured by the boundary (vanish), or a 2nd particle can also be emitted. The formulas
below account for all these possible scenarios. As an example, the pressure exerted on an outflow boundary
versus a specularly reflecting boundary is different, since in the former case there is no net momentum flux back

150

https://sparta.github.io

into the simulation box by reflected particles.

Also note that all values for a boundary collision are tallied based on the species group of the incident particle.
Quantities associated with outgoing particles are part of the same tally, even if they are in different species
groups.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the stats_style command.

The values over many sampling timesteps can be averaged by the fix ave/time command. It does its averaging as
if the particles striking the boundary at each sampling timestep were combined together into one large set to
compute the formulas below. The answer is then divided by the number of sampling timesteps if it is not
otherwise normalized by the number of particles. Note that in general this is a different normalization than taking
the values produced by the formulas below for a single timestep, summing them over the sampling timesteps, and
then dividing by the number of sampling steps. However for the current values listed below, the two
normalization methods are the same.

NOTE: If particle weighting is enabled via the global weight command, then all of the values below are scaled by
the weight assigned to the grid cell in which the particle collision with the boundary occurs. The only exception is
the the n value, which is NOT scaled by the weight; it is a simple count of particle crossings or collisions with the
boundary.

The n value counts the number of particles in the group crossing or colliding with the boundary.

The nwt value counts the number of particles in the group crossing or colliding with the boundary and weights the
count by the weight assigned to the grid cell in which the particle collision with the boundary occurs. The nwt
quantity will only be different than n if particle weighting is enabled via the global weight command.

The nflux value calculates the number flux imparted to the boundary by particles in the group. This is computed
as

Nflux = N / (A * dt / fnum)

where N is the number of all contributing particles, normalized by A = the area of the surface element, dt = the
timestep, and fnum = the real/simulated particle ratio set by the global fnum command.

The mflux value calculates the mass flux imparted to the boundary by particles in the group. This is computed as

Mflux = Sum_i (mass_i) / (A * dt / fnum)

where the sum is over all contributing particle masses, normalized by the area of the surface element, dt and fnum
as defined before.

The press value calculates the pressure P exerted on the boundary in the normal direction by particles in the
group, such that outward pressure is positive. This is computed as

p_delta = mass * (V_post - V_pre)
P = Sum_i (p_delta_i dot N) / (A * dt / fnum)

where A, dt, fnum are defined as before. P_delta is the change in momentum of a particle, whose velocity changes
from V_pre to V_post when colliding with the boundary. The pressure exerted on the boundary is the sum over all
contributing p_delta dotted into the normal N of the boundary which is directed into the box, normalized by A =
the area of the boundary face and dt = the timestep and fnum = the real/simulated particle ratio set by the global

151

fnum command.

The shx, shy, shz values calculate the shear pressure components Sx, Sy, Sz extered on the boundary in the
tangential direction to its normal by particles in the group, with respect to the x, y, z coordinate axes. These are
computed as

p_delta = mass * (V_post - V_pre)
p_delta_t = p_delta - (p_delta dot N) N
Sx = - Sum_i (p_delta_t_x) / (A * dt / fnum)
Sy = - Sum_i (p_delta_t_y) / (A * dt / fnum)
Sz = - Sum_i (p_delta_t_z) / (A * dt / fnum)

where p_delta, V_pre, V_post, N, A, dt, and fnum are defined as before. P_delta_t is the tangential component of
the change in momentum vector p_delta of a particle. P_delta_t_x (and y,z) are its x, y, z components.

The ke value calculates the kinetic energy flux Eflux imparted to the boundary by particles in the group, such that
energy lost by a particle is a positive flux. This is computed as

e_delta = 1/2 mass (V_post^2 - V_pre^2)
Eflux = - Sum_i (e_delta) / (A * dt / fnum)

where e_delta is the kinetic energy change in a particle, whose velocity changes from V_pre to V_post when
colliding with the boundary. The energy flux imparted to the boundary is the sum over all contributing e_delta,
normalized by A = the area of the boundary face and dt = the timestep and fnum = the real/simulated particle ratio
set by the global fnum command.

The erot value calculates the rotational energy flux Eflux imparted to the boundary by particles in the group, such
that energy lost by a particle is a positive flux. This is computed as

e_delta = Erot_post - Erot_pre
Eflux = - Sum_i (e_delta) / (A * dt / fnum)

where e_delta is the rotational energy change in a particle, whose internal rotational energy changes from
Erot_pre to Erot_post when colliding with the boundary. The flux equation is the same as for the ke value.

The evib value calculates the vibrational energy flux Eflux imparted to the boundary by particles in the group,
such that energy lost by a particle is a positive flux. This is computed as

e_delta = Evib_post - Evib_pre
Eflux = - Sum_i (e_delta) / (A * dt / fnum)

where e_delta is the vibrational energy change in a particle, whose internal vibrational energy changes from
Evib_pre to Evib_post when colliding with the boundary. The flux equation is the same as for the ke value.

The etot value calculates the total energy flux imparted to the boundary by particles in the group, such that energy
lost by a particle is a positive flux. This is simply the sum of kinetic, rotational, and vibrational energies. Thus the
total energy flux is the sum of what is computed by the ke, erot, and evib values.

Output info:

This compute calculates a global array, with the number of columns equal to the number of values times the
number of groups. The ordering of columns is first by values, then by groups. I.e. if the n and u values were
specified as keywords, then the first two columns would be n and u for the first group, the 3rd and 4th columns
would be n and u for the second group, etc. The number of rows is 4 for a 2d simulation for the 4 faces (xlo, xhi,

152

ylo, yhi), and it is 6 for a 3d simulation (xlo, xhi, ylo, yhi, zlo, zhi).

The array can be accessed by any command that uses global array values from a compute as input. See Section
6.4 for an overview of SPARTA output options.

The array values will be in the units appropriate to the individual values as described above. N is unitless. Press,
shx, shy, shz are in pressure units. Ke, erot, evib, and etot are in energy/area-time units for 3d simulations and
energy/length-time units for 2d simulations.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

If specified with a kk suffix, this compute can be used no more than twice in the same input script (active at the
same time).

Related commands:

fix ave/time

Default: none

153

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute count command

compute count/kk command

Syntax:

compute ID count id1 id2 ...

ID is documented in compute command•
count = style name of this compute command•
id1,id2,... = species ID or mixture ID or mixture/group

 species ID = ID used with the species command
 mixture ID = ID used with the mixture command, expands to all groups in mixture
 mixture/group = ID of mixture followed by name of a group within mixture

•

Examples:

compute 1 count species
compute Ncounts count N N2 N+ air/O

Description:

Define a computation that counts the number of particles currently in the simulation for various species or groups
within mixtures. Groups are collections of one or more species within a mixture. See the "mixture" command for
an explanation of how species are added to a mixture and how groups of species within the mixture are defined.

Each of the listed ids (id1, id2, etc) can be in one of three formats. Any of the ids can be in any of the formats.

An id can be a species ID, in which case the count is for particles of that species.

An id can be a mixture ID, in which case one count is performed for each of the groups within the mixture. In the
first example above, "species" is the name of a default mixture which assigns every species defined for the
simulation to its own group. If there are 10 species in the simulation, there will thus be 10 counts calculated, the
same as if the command had been specified with explicit names for all 10 species, e.g.

compute 1 count O2 N2 O N NO O2+ N2+ O+ N+ NO+

An id can also be of the form mix-ID/name where mix-ID is a mixture ID and name is the name of a group in that
mixture.

Output info:

If there is a single count accumulated, this compute calculates a global scalar. If there are multiple counts
accumulated, it calculates a global vector with a length = number of counts. These results can be used by any
command that uses global scalar or vector values from a compute as input. See Section 4.4 for an overview of
SPARTA output options.

The values will all be unitless counts.

154

https://sparta.github.io

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

It is an error if a listed id is both a species ID and a mixture ID, since this command cannot distinguish between
them.

Related commands: none

Default: none

155

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute distsurf/grid command

compute distsurf/grid/kk command

Syntax:

compute ID distsurf/grid group-ID surf-ID keyword args ...

ID is documented in compute command•
distsurf/grid = style name of this compute command•
group-ID = group ID for which grid cells to perform calculation on•
surf-ID = group ID for which surface elements to consider•
zero or more keyword/args pairs may be appended•
keyword = dir

dir args = Sx Sy Sz
 Sx,Sy,Sz = direction vector used to test surf elements

•

Examples:

compute 1 distsurf/grid all all
compute 1 distsurf/grid subset sphere2 dir 1 0 0

Description:

Define a computation that calculates the minimum distance from each grid cell in a grid cell group to any surface
element in a surface element group. This is useful for grid adaptation; the adapt_grid command can use the
compute as a criterion for refining or coarsening individual grid cells.

Only grid cells in the grid group specified by group-ID are included in the calculation. See the group grid
command for info on how grid cells can be assigned to grid groups. Only surface elements in the surface element
group specified by surf-ID are included in the distance calculations. See the group surf command for info on how
surface elements can be assigned to surface element groups.

If the dir keyword is specified it can exclude additional surface elements. The Sx,Sy,Sz settings are components
of a vector. It's length does not matter, just its direction. Only surface elements whose normal is opposed to the
vector direction (in a dot product sense) are eligible surfaces for the distance calculations. This can be useful to
exclude surface elements that are not facing "upwind" with respect to the flow direction of the particles. I.e. by
setting Sx,Sy,Sz to the flow direction. If Sy,Sy,Sz = (0,0,0), which is the default, then no surface elements are
excluded by this criterion.

Each grid cell also only considers a subset of eligible surfaces in its distance calculations. A vector from the grid
cell center to the center of each surface element is calculated. If that vector is opposed to the normal vector of the
surface element (in a dot product sense), the distance from the grid cell to the surface is calculated. This means
that for an individual grid cell, only surface elements that are "facing" the grid cell are considered.

The "distance" between a grid cell and a surface element is the minimum distance between the two geometric
entities. If the surface element overlaps with the grid cell, the distance is 0.0. Otherwise the distance is the
minimum distance between the perimeter of the grid cell and the line segment (in 2d) or the perimeter of the
triangle (in 3d).

156

https://sparta.github.io

Here is an example of using this compute with the adapt_grid command to adapt the grid around the upwind side
of a circular object (flow is from the left boundary of the box). The first adapt_grid command uses a threshold
distance value of 0.5 to create refine grid cells once. The second adapt_grid command uses a threshold distance
value of 0.1 to create some of the grid cells closer to the surface a second time.

NOTE: include pic

Here is an example of how to use this compute with two successive "adapt_grid" commands. The first refines
once for grid cells within a distance of 0.3 from surface elements facing upwind. The second refines again for grid
cells within a distance of 0.1 from the surface elements.

compute 5 distsurf/grid all all dir 1 0 0
adapt_grid all refine value c_5 0.3 0.0 thresh less more
adapt_grid all refine value c_5 0.1 0.0 thresh less more

For a 2d simulation of flow around a circle (flow from right to left), these commands produce this kind of adapted
grid (click for a larger image):

Output info:

This compute calculates a per-grid vector whose values are the distances of each grid cell from any of the surface
elements.

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 6.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells.

Grid cells not in the specified group-ID will output zeroes for all their values.

The vector can be accessed by any command that uses per-grid values from a compute as input. See Section 6.4
for an overview of SPARTA output options.

The per-grid array values for the vector will be in distance units.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

157

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions: None

Related commands:

adapt_grid

Default:

The keyword default is dir = 0,0,0.

158

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute dt/grid command

compute dt/grid/kk command

Syntax:

compute ID dt/grid group-ID tfraction cfraction tau temperature usq vsq wsq

ID is documented in compute command•
dt/grid = style name of this compute command•
group-ID = group ID for which grid cells to perform calculation on•
tfraction = fraction of grid cell transit time used to calculate timestep•
cfraction = fraction of grid cell mean collision time used to calculate timestep•
tau = compute or fix column for mean collision time, prefaced by "c_" or "f_"•
temperature = compute or fix column for temperature, prefaced by "c_" or "f_"•
usq = compute or fix column for x component of velocity squared, prefaced by "c_" or "f_"•
vsq = compute or fix column for y component of velocity squared, prefaced by "c_" or "f_"•
wsq = compute or fix column for z component of velocity squared, prefaced by "c_" or "f_"•

Examples:

compute 1 grid all mymixture nrho temp usq vsq wsq
fix 1 ave/grid all 10 50 500 c_1[*]
compute mct lambda/grid f_1[1] f_1[2] tau
compute tstep dt/grid all 0.25 0.1 c_mct f_1[2] f_1[3] f_1[4] f_1[5]

Description:

Calculate a current timestep for each grid cell in a grid cell group, based on the properties of particles currently in
the cell and the grid cell size. The per-grid cell timesteps can be output in a per-grid dump file for post analyses.
Or they can be used as input to the fix dt/reset command to adjust the global timestep for a variable timestep
simulation. See this section of the manual for more information on variable timestep simulations.

Only grid cells in the grid group specified by group-ID are included in the calculations. See the group grid
command for info on how grid cells can be assigned to grid groups.

The tfraction and cfraction arguments are both values from 0.0 to 1.0 which are applied to the transit term and
collision term in the example formula for a candidate cell timestep below.

In practice, multiple transit-based timestep candidates are constructed based on the cell dimensions in each
coordinate direction and the associated average particle velocity components in addition to the maximum most
probable speed. The selected cell timestep is the minumum of all candidate timesteps. The collision and transit
fractions simply provide a user-defined safety margin for the collision time and transit time estimates. In
(Bird2013), Bird recomnmends setting the collision fraction to 0.2, which is likely a good starting point for the
selection of both of these fractions.

The remaining 5 arguments specify either computes which calculate various per grid cell quantities or fixes which
time average those per grid cell quantities. The 5 quantities are per grid cell mean collision time (tau),

159

https://sparta.github.io

temperature, and the xyz components of the velocity squared for particles in the grid cell. A mean collision time
can be calculated with the compute lambda/grid command using the tau option. The compute grid command can
calculate the other 4 quantities. The compute thermal/grid command can also compute a per grid cell temperature.

This is done by specifying the tau, temperature, usq, vsq, wsq arguments like this:

c_ID = compute with ID that calculates a per grid cell quantity as a vector output•
c_ID[m] = compute with ID that calculates a quantity as its Mth column of array output•
f_ID[m] = fix with ID that calculates a time-averaged quantity as a vector output•
f_ID[m] = fix with ID that calculates a time-averaged quantity as its Mth column of array output•

See the Example section above for an example of how these arguments can be specified.

IMPORTANT NOTE: If the IDs of one or more fix ave/grid commands is used for these 5 arguments, they only
produce output on timesteps that are multiples of their Nfreq argument. Thus this compute can only be invoked on
those timesteps.

Output info:

This compute calculates a per-grid vector.

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 6.8 of the manual for details of how SPARTA defines child, unsplit, split, and sub
cells. Note that cells inside closed surfaces contain no particles. These could be unsplit or cut cells (if they have
zero flow volume). Both of these kinds of cells will compute a zero result for the cell timestep. Likewise, split
cells store no particles and will produce a zero result. This is because their sub-cells actually contain the particles
that are geometrically inside the split cell. Additionally, any cell that is able to store particles but does not have
any particles when this compute is invoked produces a zero result. Finally, a zero result is produced if any cell
data to be used in the timestep calculation is zero (including temperature, speed, and mean collision time).

The vector can be accessed by any command that uses per-grid values from a compute as input. See Section 4.4
for an overview of SPARTA output options.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

As explained above, to use this compute with nrho or temp defined as input from a fix ave/grid command, this
compute must only be invoked on timesteps that are multiples of the Nfreq argument used by the fix, since those
are the steps when it produces output.

160

Related commands:

fix dt/reset, compute grid, compute thermal/grid, compute lambda/grid, fix ave/grid

Default: none

(Bird2013) G. A. Bird, The DSMC method, CreateSpace Independent Publishing Platform, 2013.

161

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute eflux/grid command

compute eflux/grid/kk command

Syntax:

compute ID eflux/grid group-ID mix-ID value1 value2 ...

ID is documented in compute command•
eflux/grid = style name of this compute command•
group-ID = group ID for which grid cells to perform calculation on•
mix-ID = mixture ID to perform calculation on•
one or more values can be appended•
values = heatx or heaty or heatz

heatx,heaty,heatz = xyz components of energy flux density tensor

•

Examples:

compute 1 eflux/grid all species heatx heaty heatz
compute 1 eflux/grid subset species heaty

These commands will dump time averaged energy flux densities for each species and each grid cell to a dump file
every 1000 steps:

compute 1 eflux/grid all species heatx heaty heatz
fix 1 ave/grid 10 100 1000 c_1[*]
dump 1 grid all 1000 tmp.grid id f_1[*]

Description:

Define a computation that calculates components of the energy flux density vector for each grid cell in a grid cell
group. This is also called the heat flux density vector, and is based on the thermal velocity of the particles in each
grid cell. The values are tallied separately for each group of species in the specified mixture, as described in the
Output section below. See the mixture command for how a set of species can be partitioned into groups.

Only grid cells in the grid group specified by group-ID are included in the calculations. See the group grid
command for info on how grid cells can be assigned to grid groups.

The values listed above rely on first computing and subtracting the center-of-mass (COM) velocity for all
particles in the group and grid cell from each particle to yield a thermal velocity. This thermal velocity is used to
compute the components of the energy flux density vector, as described below. This is in contrast to some of the
values tallied by the compute grid temp command which simply uses the full velocity of each particle to compute
a momentum or kinetic energy density. For non-streaming simulations, the two results should be similar, but for
streaming flows, they will be different.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as
if the particles in the cell at each sampling timestep were combined together into one large set of particles to

162

https://sparta.github.io

compute the formulas below.

Note that the center-of-mass (COM) velocity that is subtracted from each particle to yield a thermal velocity for
each particle, as described below, is also computed over one large set of particles (across all timesteps), in
contrast to using a COM velocity computed only for particles in the current timestep, which is what the compute
sonine/grid command does.

Note that this is a different form of averaging than taking the values produced by the formulas below for a single
timestep, summing those values over the sampling timesteps, and then dividing by the number of sampling steps.

Calculation of the energy flux density is done by first calcuating the center-of-mass (COM) velocity of particles
for each group with a grid cell. This is done as follows:

COMx = Sum_i (mass_i Vx_i) / Sum_i (mass_i)
COMy = Sum_i (mass_i Vy_i) / Sum_i (mass_i)
COMz = Sum_i (mass_i Vz_i) / Sum_i (mass_i)
Cx = Vx - COMx
Cy = Vy - COMy
Cz = Vz - COMz
Csq = Cx*Cx + Cy*Cy + Cz*Cz

The COM velocity is (COMx,COMy,COMz). The thermal velocity of each particle is (Cx,Cy,Cz), i.e. its velocity
minus the COM velocity of particles in its group and cell.

The heatx, heaty, heatz values compute the components of the energy flux density vector due to particles in the
group as follows:

heatx = 0.5 * fnum/volume Sum_i (mass_i Cx Csq)
heaty = 0.5 * fnum/volume Sum_i (mass_i Cy Csq)
heatz = 0.5 * fnum/volume Sum_i (mass_i Cz Csq)

Note that if particle weighting is enabled via the global weight command, then the volume used in the formula is
divided by the weight assigned to the grid cell.

Output info:

This compute calculates a per-grid array, with the number of columns equal to the number of values times the
number of groups. The ordering of columns is first by values, then by groups. I.e. if momxx and momxy values
were specified as keywords, then the first two columns would be momxx and momxy for the first group, the 3rd
and 4th columns would be momxx and momxy for the second group, etc.

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 6.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells. Note that cells inside closed surfaces contain no particles. These could be unsplit or cut cells (if they
have zero flow volume). Both of these kinds of cells will compute a zero result for all their values. Likewise, split
cells store no particles and will produce a zero result. This is because their sub-cells actually contain the particles
that are geometrically inside the split cell.

Grid cells not in the specified group-ID will output zeroes for all their values.

The array can be accessed by any command that uses per-grid values from a compute as input. See Section 6.4 for
an overview of SPARTA output options.

The per-grid array values will be in the units of energy flux density = energy-velocity/volume units.

163

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions: none

Related commands:

compute grid, compute thermal/grid, compute pflux/grid, fix ave/grid, dump grid

Default: none

164

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute fft/grid command

compute fft/grid/kk command

Syntax:

compute ID fft/grid value1 value2 ... keyword args ...

ID is documented in compute command•
fft/grid = style name of this compute command•
one or more values can be appended•
value = c_ID, c_ID[N], f_ID, f_ID[N], v_name

 c_ID = per-grid vector calculated by a compute with ID
 c_ID[I] = Ith column of per-grid array calculated by a compute with ID
 f_ID = per-grid vector calculated by a fix with ID
 f_ID[I] = Ith column of per-grid or array calculated by a fix with ID
 v_name = per-grid vector calculated by a grid-style variable with name

•

zero or more keyword/arg pairs can be appended•
keyword = sum or scale or conjugate or kmag

sum = yes or no to sum all FFTs into a single output
scale = sfactor = numeric value to scale results by
conjugate = yes or no = perform complex conjugate multiply or not
kx = yes or no = calculate x-component of wavelength or not
kx = yes or no = calculate y-component of wavelength or not
kx = yes or no = calculate z-component of wavelength or not
kmag = yes or no = calculate wavelength magnitude or not

•

Examples:

compute 1 fft/grid c_1

These commands will dump FFTs of instantaneous and time-averaged velocity components in each grid cell to a
dump file every 1000 steps:

compute 1 grid all u v w
fix 1 ave/grid 10 100 1000 c_1
compute 2 fft/grid f_1[1] f_1[2] f_1[3]
dump 1 grid all 1000 tmp.grid id c_2 f_1

Description:

Define a computation that performs forward FFTs on per-grid values. This can be useful, for example, in
calculating the energy spectrum of a turbulent flow.

The defined grid must be a regular one-level grid (not hierarchical) with an even number of grid cells in each
dimension. Depending on the dimension of the simulation, either 2d or 3d FFTs will be performed. Because FFTs
assume a periodic field, the simulation domain should be periodic in all dimensions, as set by the boundary
command, though SPARTA does not check for that.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump grid command. The values over many sampling timesteps can be averaged by the fix

165

https://sparta.github.io

ave/grid command.

A forward FFT is perfomed on each input value independently.

Each listed input can be the result of a compute or fix or the evaluation of a variable, all of which must generate
per-grid quantities.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. The
compute must generate a per-grid vector or array. See the individual compute doc page for details. If no bracketed
integer is appended, the vector calculated by the compute is used. If a bracketed integer is appended, the Ith
column of the array calculated by the compute is used. Users can also write code for their own compute styles and
add them to SPARTA.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. The fix
must generate a per-grid vector or array. See the individual fix doc page for details. Note that some fixes only
produce their values on certain timesteps, which must be compatible with when this compute references the
values, else an error results. If no bracketed integer is appended, the vector calculated by the fix is used. If a
bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can also write code
for their own fix style and add them to SPARTA.

If a value begins with "v_", a variable name must follow which has been previously defined in the input script. It
must be a grid-style variable. Such a variable defines a formula which can reference stats keywords or invoke
other computes, fixes, or variables when they are evaluated. So this is a very general means of creating a per-grid
input to perform an FFT on.

If the sum keyword is set to yes, the results of all FFTs will be summed together, grid value by grid value, to
create a single output.

The result of each FFT is scaled by the sfactor value of the scale keyword, whose default is 1.0. Note that forward
FFTs do not perform any scaling of their own; backward FFTs scale each output value by N = # of points in the
FFT grid.

If the conjugate keyword is set to no, the result of each FFT is 2 values for each grid point, the real and imaginary
parts of a complex number. If the conjugate keyword is set to yes, the complex value for each grid point is
multiplied by its complex conjugate to yield a single real-valued number for each grid point. Note that this value
is effectively the squared length of the complex 2-vector with real and imaginary components.

If one or more of the kx, ky, kz, or kmag keywords are set to yes, then one or more extra columns of per-grid
output is generated. For kx the x-component of the K-space wavevector is generated. Similarly for ky and kz. For
kmag the length of each K-space wavevector is generated. These values can be useful, for example, for
histogramming an energy spectrum computed from the FFT of a velocity field, as a function of wavelength or a
component of the wavelength.

Note that the wavevector for each grid cell is indexed as (Kx,Ky,Kz). Those indices are the x,y,z components
output by the kx, ky, kz keywords. The total wavelength, which is output by the kmag keyword, is sqrt(Kx^2 +
Ky^2 + Kz^2) for 3d models and sqrt(Kx^2 + Ky^2) for 2d models. For all keywords, the Kx,Ky,Kz represent
distance from the origin in a periodic sense. Thus for a grid that is NxMxP, the Kx values associated with the
x-dimension and used in those formulas are not Kx = 0,1,2 ... N-2,N-1. Rather they are Kx = 0,1,2, ... N/2-1, N/2,
N/2-1, ... 2,1. Similary for Ky in the y-dimension with a max index of M/2, and Kz in the z-dimension with a max
index of P/2.

166

Output info:

The number of per-grid values ouptut by this compute depends on the optional keyword settings. The number of
FFTs is equal to the number of specified input values.

There are 2 columns of output per FFT if sum = no and conjugate = no, with real and imaginary components for
each FFT. There is 1 column of output per FFT if sum = no and conjugate = yes. There are 2 columns of output if
sum = yes and conjugate = no, with real and imaginary components for the sum of all the FFTs. There is one
column of output for sum = yes and conjugate = yes. For all these cases, there is one extra column of output for
each of the kx, ky, kz, kmag keywords if they are set to yes. The extra columns come before the FFT columns, in
the order kx, ky, kz, kmag. Thus is only ky and kmag are set to yes, there will be 2 extra columns, the first for ky
and the 2nd for kmag.

If the total number of output columns = 1, then this compute produces a per-grid vector as output. Otherwise it
produces a per-grid array.

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 6.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells. Note that cells inside closed surfaces contain no particles. These could be unsplit or cut cells (if they
have zero flow volume). Both of these kinds of cells will compute a zero result for all their values. Likewise, split
cells store no particles and will produce a zero result. This is because their sub-cells actually contain the particles
that are geometrically inside the split cell.

The array can be accessed by any command that uses per-grid values from a compute as input. See Section 6.4 for
an overview of SPARTA output options.

The per-grid vector or array values will be in the units appropriate to the FFT operations as described above. The
K-space wavevector magnitudes are effectively unitless, e.g. sqrt(Kx^2 + Ky^2 + Kz^2) where Kx,Ky,Kz are
integers. The FFT values can be real or imaginary or squared values in K-space resulting from FFTs of per-grid
quantities in whatever units the specified input values represent.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

This style is part of the FFT package. It is only enabled if SPARTA was built with that package. See the Getting
Started section for more info.

Related commands:

167

fix ave/grid, dump grid, compute grid

Default:

The option defaults are sum = no, scale = 1.0, conjugate = no, kmag = no.

168

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute grid command

compute grid/kk command

Syntax:

compute ID grid group-ID mix-ID value1 value2 ...

ID is documented in compute command•
grid = style name of this compute command•
group-ID = group ID for which grid cells to perform calculation on•
mix-ID = mixture ID to perform calculation on•
one or more values can be appended•
value = n or nrho or nfrac or mass or massrho or massfrac or u or v or w or usq or vsq or wsq of ke or
temp or erot or trot or evib or tvib or pxrho or pyrho or pzrho or kerho

n = particle count
nrho = number density
nfrac = number fraction
mass = mass
massrho = mass density
massfrac = mass fraction
u = x component of velocity
v = y component of velocity
w = z component of velocity
usq = x component of velocity squared
vsq = y component of velocity squared
wsq = z component of velocity squared
ke = kinetic energy
temp = temperature
erot = rotational energy
trot = rotational temperature
evib = vibrational energy
tvib = vibrational temperature (classical definition)
pxrho = x component of momentum density
pyrho = y component of momentum density
pzrho = z component of momentum density
kerho = kinetic energy density

•

Examples:

compute 1 grid all species n u v w usq vsq wsq
compute 1 grid subset air n u v w

These commands will dump time averages for each species and each grid cell to a dump file every 1000 steps:

compute 1 grid all species n u v w usq vsq wsq
fix 1 ave/grid 10 100 1000 c_1[*]
dump 1 grid all 1000 tmp.grid id f_1[*]

Description:

Define a computation that calculates one or more values for each grid cell in a grid cell group, based on the
particles in the cell. The values are tallied separately for each group of species in the specified mixture, as
described in the Ouput section below. See the mixture command for how a set of species can be partitioned into

169

https://sparta.github.io

groups.

Only grid cells in the grid group specified by group-ID are included in the calculations. See the group grid
command for info on how grid cells can be assigned to grid groups.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as
if the particles in the cell at each sampling timestep were combined together into one large set of particles to
compute the formulas below.

Note that for most of the values, this is a different form of averaging than taking the values produced by the
formulas below for a single timestep, summing those values over the sampling timesteps, and then dividing by the
number of sampling steps.

The n value counts the number of particles in each group. When accumulated over multiple sampling steps, this
value is normalized by the number of sampling steps.

The nrho value computes the number density for the grid cell volume due to particles in each group:

Nrho = fnum/volume * N

N is the number of particles (same as the n keyword), fnum is the real/simulated particle ratio set by the global
fnum command, and volume is the flow volume of the grid cell. When accumulated over multiple sampling steps,
this value is normalized by the number of sampling steps. Note that if particle weighting is enabled via the global
weight command, then the volume used in the formula is divided by the weight assigned to the grid cell.

The nfrac value computes the number fraction of particles in each group:

Nfrac = Ngroup / Ntotal

Ngroup is the count of particles in the group and Ntotal is the total number of particles in all groups in the
mixture. Note that this total is not (necessarily) all particles in the cell.

The mass value computes the average mass of particles in each group:

Mass = Sum_i (mass_i) / N

where Sum_i is a sum over particles in the group.

The massrho value computes the mass density for the grid cell volume due to particles in each group:

Massrho = fnum/volume * Sum_i (mass_i)

where Sum_i is a sum over particles in the group, fnum is the real/simulated particle ratio set by the global fnum
command, and volume is the flow volume of the grid cell. When accumulated over multiple sampling steps, this
value is normalized by the number of sampling steps. Note that if particle weighting is enabled via the global
weight command, then the volume used in the formula is divided by the weight assigned to the grid cell.

The massfrac value computes the mass fraction of particles in each group:

170

Massfrac = Sum_i (mass_i) / Masstotal

where Sum_i is a sum over particles in the group and Masstotal is the total mass of particles in all groups in the
mixture. Note that this total is not (necessarily) the mass of all particles in the cell.

The u, v, w values compute the components of the mass-weighted average velocity of particles in each group:

U = Sum_i (mass_i Vx_i) / Sum_i (mass_i)
V = Sum_i (mass_i Vy_i) / Sum_i (mass_i)
W = Sum_i (mass_i Vz_i) / Sum_i (mass_i)

This is the same as the center-of-mass velocity of particles in each group.

The usq, vsq, wsq values compute the average mass-weighted squared components of the velocity of particles in
each group:

Usq = Sum_i (mass_i Vx_i Vx_i) / Sum_i (mass_i)
Vsq = Sum_i (mass_i Vy_i Vy_i) / Sum_i (mass_i)
Wsq = Sum_i (mass_i Vz_i Vz_i) / Sum_i (mass_i)

The ke value computes the average kinetic energy of particles in each group:

Vsq = Vx*Vx + Vy*Vy + Vz*Vz
KE = Sum_i (1/2 mass_i Vsq_i) / N

Note that this is different than the group's contribution to the average kinetic energy of entire grid cells. That can
be calculated by multiplying the ke quantity by the n quantity.

The temp value first computes the average kinetic energy of particles in each group, as for the ke value. This is
then converted to a temperature T by the following formula where kB is the Boltzmann factor:

Vsq = Vx*Vx + Vy*Vy + Vz*Vz
KE = Sum_i (1/2 mass_i Vsq_i) / N
T = KE / (3/2 kB)

Note that this definition of temperature does not subtract out a net streaming velocity for particles in the grid cell,
so it is not a thermal temperature when the particles have a non-zero streaming velocity. See the compute
thermal/grid command to calculate thermal temperatures after subtracting out streaming components of velocity.

The erot value computes the average rotational energy of particles in each group:

Erot = Sum_i (erot_i) / N

Note that this is different than the group's contribution to the average rotational energy of entire grid cells. That
can be calculated by multiplying the erot quantity by the n quantity.

The trot value computes a rotational temperature by the following formula where kB is the Boltzmann factor:

Trot = (2/kB) Sum_i (erot_i) / Sum_i (dof_i)

Dof_i is the number of rotational degrees of freedom for particle i.

The evib value computes the average vibrational energy of particles in each group:

Evib = Sum_i (evib_i) / N

171

Note that this is different than the group's contribution to the average vibrational energy of entire grid cells. That
can be calculated by multiplying the evib quantity by the n quantity.

The tvib value computes a classical definition of vibrational temperature, valid for continous distributions of
vibrational energy, by the following formula where kB is the Boltzmann factor:

Tvib = (2/kB) Sum_i (evib_i) / Sum_i (dof_i)

Dof_i is the number of vibrational degrees of freedom for particle i.

The pxrho, pyrho, pzrho values compute components of momentum density for the grid cell volume due to
particles in each group:

Pxrho = fnum/volume * Sum_i (mass_i * Vx_i)
Pyrho = fnum/volume * Sum_i (mass_i * Vy_i)
Pzrho = fnum/volume * Sum_i (mass_i * Vz_i)

where Sum_i is a sum over particles in the group, fnum is the real/simulated particle ratio set by the global fnum
command, and volume is the flow volume of the grid cell. When accumulated over multiple sampling steps, this
value is normalized by the number of sampling steps. Note that if particle weighting is enabled via the global
weight command, then the volume used in the formula is divided by the weight assigned to the grid cell.

The kerho value computes the kinetic energy density for the grid cell volume due to particles in each group:

Vsq = Vx*Vx + Vy*Vy + Vz*Vz
KErho = fnum/volume * Sum_i (mass_i * Vsq_i)

where Sum_i is a sum over particles in the group, fnum is the real/simulated particle ratio set by the global fnum
command, and volume is the flow volume of the grid cell. When accumulated over multiple sampling steps, this
value is normalized by the number of sampling steps. Note that if particle weighting is enabled via the global
weight command, then the volume used in the formula is divided by the weight assigned to the grid cell.

Output info:

This compute calculates a per-grid array, with the number of columns equal to the number of values times the
number of groups. The ordering of columns is first by values, then by groups. I.e. if the n and u values were
specified as keywords, then the first two columns would be n and u for the first group, the 3rd and 4th columns
would be n and u for the second group, etc.

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 6.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells. Note that cells inside closed surfaces contain no particles. These could be unsplit or cut cells (if they
have zero flow volume). Both of these kinds of cells will compute a zero result for all their values. Likewise, split
cells store no particles and will produce a zero result. This is because their sub-cells actually contain the particles
that are geometrically inside the split cell.

Grid cells not in the specified group-ID will output zeroes for all their values.

The array can be accessed by any command that uses per-grid values from a compute as input. See Section 6.4 for
an overview of SPARTA output options.

172

The per-grid array values will be in the units appropriate to the individual values as described above. N is unitless.
Nrho is in 1/distance^3 units for 3d simulations and 1/distance^2 units for 2d simulations. Mass is in mass units.
Massrho is in is in mass/distance^3 units for 3d simulations and mass/distance^2 units for 2d simulations. U, v,
and w are in velocity units. Usq, vsq, and wsq are in velocity squared units. Ke, erot, and evib are in energy units.
Temp and trot and tvib are in temperature units. Pxrho, pyrho, pzrho are in momentum/distance^3 units for 3d
simulations and momentum/distance^2 units for 2d simulations, where momentum is in units of mass*velocity.
Kerho is in units of energy/distance^3 units for 3d simulations and energy/distance^2 units for 2d simulations.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions: none

Related commands:

fix ave/grid, dump grid, compute thermal/grid

Default: none

173

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute isurf/grid command

Syntax:

compute ID isurf/grid group-ID mix-ID value1 value2 ...

ID is documented in compute command•
isurf/grid = style name of this compute command•
group-ID = group ID for which grid cells to perform calculation on•
mix-ID = mixture ID for particles to perform calculation on•
one or more values can be appended•
value = n or nwt or mflux or fx or fy or fz or press or px or py or pz or shx or shy or shz or ke

 n = count of particles hitting surface elements in a grid cell
 nwt = weighted count of particles hitting surface elements in a grid cell
 mflux = flux of mass on surface elements in a grid cell
 fx,fy,fz = components of force on surface elements in a grid cell
 press = magnitude of normal pressure on surface elements in a grid cell
 px,py,pz = components of normal pressure on surface elements in a grid cell
 shx,shy,shz = components of shear stress on surface elements in a grid cell
 ke = flux of particle kinetic energy on surface elements in a grid cell
 erot = flux of particle rotational energy on surface elements in a grid cell
 evib = flux of particle vibrational energy on surface elements in a grid cell
 etot = flux of particle total energy on surface elements in a grid cell

•

Examples:

compute 1 isurf/grid all all n press eng
compute mine isurf/grid sphere species press shx shy shz

These commands will dump time averages for each species and each grid cell to a dump file every 1000 steps:

compute 1 isurfgrid all species n press shx shy shz
fix 1 ave/grid all 10 100 1000 c_1[*]
dump 1 grid all 1000 tmp.grid id f_1[*]

These commands will time-average the force surface elements in each grid cell, then sum them across grid cells to
compute drag (fx) and lift (fy) on the set of implicit surfs:

compute 1 isurf/grid all all fx fy
fix 1 ave/grid all 10 100 1000 c_1[*]
compute 2 reduce sum f_1[1] f_1[2]
stats 1000
stats_style step cpu np c_2[1] c_2[2]

Description:

Define a computation that calculates one or more values for each grid cell in a grid cell group, based on the
particles that collide with the implicit surfaces in that grid cell. The values are summed for each group of species
in the specified mixture. See the mixture command for how a set of species can be partitioned into groups. Only
grid cells in the grid group specified by group-ID are included in the calculations. See the group grid command
for info on how grid cells can be assigned to grid groups.

174

https://sparta.github.io

Implicit surface elements are triangles for 3d simulations and line segments for 2d simulations. Unlike explicit
surface elements, each triangle or line segment is wholly contained within a single grid cell. See the read_isurf
command for details.

This command can only be used for simulations with implicit surface elements. See the similar compute surf
command for use with simulations with explicit surface elements.

Note that when a particle collides with a surface element, it can bounce off (possibly as a different species), be
captured by the surface (vanish), or a 2nd particle can also be emitted. The formulas below account for all the
possible outcomes. For example, the kinetic energy flux ke onto a suface element for a single collision includes a
positive contribution from the incoming particle and negative contributions from 0, 1, or 2 outgoing particles. The
exception is the n and nwt values which simply tally counts of particles colliding with the surface element.

Also note that all values for a collision are tallied based on the species group of the incident particle. Quantities
associated with outgoing particles are part of the same tally, even if they are in different species groups.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as
if the particles striking the surface elements within the grid cell at each sampling timestep were combined together
into one large set to compute the formulas below. The answer is then divided by the number of sampling
timesteps if it is not otherwise normalized by the number of particles. Note that in general this is a different
normalization than taking the values produced by the formulas below for a single timestep, summing them over
the sampling timesteps, and then dividing by the number of sampling steps. However for the current values listed
below, the two normalization methods are the same.

NOTE: If particle weighting is enabled via the global weight command, then all of the values below are scaled by
the weight assigned to the grid cell in which the particle collision with the surface element occurs. The only
exception is the the n value, which is NOT scaled by the weight; it is a simple count of particle collisions with
surface elements in the grid cell.

The meaning of all the value keywords and the formulas for calculating these quantities is exactly the same as
described by the compute surf command.

The only difference is that the quantities are calculated on a per grid cell basis, summing over all the surface
elements in that grid cell.

Output info:

This compute calculates a per-grid array, with the number of columns equal to the number of values times the
number of groups. The ordering of columns is first by values, then by groups. I.e. if the n and u values were
specified as keywords, then the first two columns would be n and u for the first group, the 3rd and 4th columns
would be n and u for the second group, etc.

Grid cells not in the specified group-ID will output zeroes for all their values.

The array can be accessed by any command that uses per-grid values from a compute as input. See Section 6.4 for
an overview of SPARTA output options.

The per-grid array values will be in the units appropriate to the individual values as described above. N is unitless.
Press, px, py, pz, shx, shy, shz are in in pressure units. Ke, erot, evib, and etot are in energy/area-time units for 3d

175

simulations and energy/length-time units for 2d simulations.

Restrictions: none

Related commands:

fix ave/grid, dump grid, compute surf

Default: none

176

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute ke/particle command

compute ke/particle/kk command

Syntax:

compute ID ke/particle

ID is documented in compute command•
ke/particle = style name of this compute command•

Examples:

compute 1 ke/particle

Description:

Define a computation that calculates the per-atom translational kinetic energy for each particle.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump particle command.

The kinetic energy is

Vsq = Vx*Vx + Vy*Vy + Vz*Vz
KE = 1/2 m Vsq

where m is the mass and (Vx,Vy,Vz) are the velocity components of the particle.

Output info:

This compute calculates a per-particle vector, which can be accessed by any command that uses per-particle
values from a compute as input.

The vector can be accessed by any command that uses per-particle values from a compute as input. See Section
4.4 for an overview of SPARTA output options.

The per-particle vector values will be in energy units.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

177

https://sparta.github.io

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions: none

Related commands:

dump particle

Default: none

178

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute lambda/grid command

compute lambda/grid/kk command

Syntax:

compute ID lambda/grid nrho temp value1 value2 ...

ID is documented in compute command•
lambda/grid = style name of this compute command•
nrho = compute or fix for number density, prefaced by "c_" or "f_"•
temp = NULL or compute or fix column for temperature, prefaced by "c_" or "f_"•
value = lambda or tau or knall or knx or kny or knz

lambda = calculate mean free path
tau = calculate mean collision time
knall = calculate Knudsen number based on cell size in all dimensions
knx = calculate Knudsen number based on cell size in x dimension
kny = calculate Knudsen number based on cell size in y dimension
knz = calculate Knudsen number based on cell size in z dimension

•

Examples:

compute 1 lambda/grid c_GR[*] NULL lambda tau
compute 1 lambda/grid f_ave[*] f_ave[3] lambda knall

These commands will dump time averages for the mean free path and mean collision time for each grid cell to a
dump file every 1000 steps:

compute 1 grid species nrho temp
fix 1 ave/grid 10 100 1000 c_1[*]
compute 2 lambda/grid f_1[1] f_1[2] lambda tau
dump 1 grid all 1000 tmp.grid id c_2

Description:

If the lambda keyword is specified, the mean free path will be computed. If the tau keyword is specified, the
mean collision time between molecular collisions for each grid cell based on the particles in that cell will be
computed. If one or more of the knall or knx or kny or knz keywords are specified, the dimensionless Knudsen
number will be calculated, which is the ratio of the mean free path to the cell size. For knall, the cell size is taken
to be the average of the three grid cell side lengths (or two cell lengths for a 2d simulation). For knx, kny, or knz,
the cell size is the single cell side length in the corresponding x,y,z dimension. The Knudsen number can be
useful for estimating the optimal grid cell size when adapting the grid, e.g. via the adapt_grid or fix adapt/grid
commands, as well as the optimal time step size.

Unlike other computes that calculate per grid cell values, this compute does not take a "group-ID" for a grid cell
group as an argument, nor a particle mixture ID as an argument. This is because it uses the number density and
temperature calculated by other computes or fixes as input, and those computes or fixes use grid group IDs or
mixture IDs as part of their computations.

The results of this compute can be used by different commands in different ways. For example, the values can be
output by the dump grid command.

179

https://sparta.github.io

The formula used to calculate the mean free path (lambda) is given in (Bird94) as equation 4.77:

NOTE: In October 2024, the formula to compute the mean free path was updated to the equation above, from
(Bird94), equation 4.65:

The new formula is more accurate as it uses the number densities, translational temperatures and VSS parameters
of each gases in the mixture, as opposed to using the flow total number density and the VSS parameters of only
one species. This will make a significant difference for gas mixtures, in particular for reacting flow problems
where the composition of the mixture changes significantly in time.

The formula used to calculate the mean collision time (tau) is given in (Bird94) as equation 1.38 combined with
4.75:

These are the exact mean free path and mean collision time for a multi-species mixture, suitable for estimating
optimal grid cell sizes and timestep as explained above.

dref and Tref and omega are collision properties for a pair of species species in the flow. Specifically, dref is the
diameter of molecules of the species pair, Tref is the reference temperature, and omega is the viscosity
temperature-dependence for the species pair.

In the formula above, n is the number density and T is the thermal temperature of particles in a grid cell. This
compute does not calculate these quantities itself; instead it uses another compute or fix to perform the
calculation. This is done by specifying the nrho and temp arguments like this:

c_ID = compute with ID that calculates temp as a vector output
c_ID[m] = compute with ID that calculates temp as its Mth column of array output
c_ID[*] = compute with ID that calculates nrho as an array output
f_ID[m] = fix with ID that calculates a time-averaged temp as a vector output
f_ID[m] = fix with ID that calculates a time-averaged temp as its Mth column of array output
f_ID[*] = fix with ID that calculates a time-averaged nrho as an array output

The temp argument can also be specified as NULL, which drops the (Tref/T) ratio term from the formula above.
That is also effectively the case if the reference species defines omega = 1/2. In that case, the temp argument is

180

ignored, whether it is NULL or not.

IMPORTANT NOTE: A per species number density array calculated by either a compute or a fix has to be
specified. The code will automatically detect the number of species in the mixture to perform the mean free path
and mean collision time calculation. The compute_grid.html command with mixture "species" has to be invoked
to ensure that the number density of all the species in the mixture is computed.

Note that if the value of n is 0.0 for a grid cell, its mean-free-path and mean-collision-time will be set to 1.0e20
(infinite length and time).

The compute_grid.html command can calculate a number density, using its nrho value. It can also calculate a
temperature using its temp value. Note that this temperature is inferred from the translational kinetic energy of the
particles, which is only appopriate for a mean free path calculation for systems with zero or small streaming
velocities. For systems with streaming flow, an appropriate temperature can be calculated by the
compute_thermal_grid.html thermal/grid command. The formulas on its doc page show that the the
center-of-mass velocity from the particles in each grid cell is subtracted from each particle's velocity to yield a
translational thermal velocity, from which a thermal temperature is calculated.

The fix_ave_grid.html ave/grid command can calculate the same values in a time-averaged sense, assuming it
uses these same computes as input. Using this fix as input to this compute will thus yield less noisy values, due to
the time averaging.

Note that the compute or fix (via the compute(s) it uses as input) has to perform its number density calculation for
a subset of the particles based on the "mixture" it uses. See the mixture.html command for how a set of species
can be partitioned into groups.

IMPORTANT NOTE: If the ID of a fix_ave_grid.html ave/grid command is used as the nrho or temp argument, it
only produces output on timesteps that are multiples of its Nfreq argument. Thus this compute can only be
invoked on those timesteps. For example, if a dump.html grid command invokes this compute to write values to a
dump file, it must do so on timesteps that are multiples of Nfreq.

Output info:

If only one output value is specified, this compute outputs a per-grid vector. Otherwise outputs a per-grid array
with two or more columns, in the order the output values were specified in the input.

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 6.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells. Note that cells inside closed surfaces contain no particles. These could be unsplit or cut cells (if they
have zero flow volume). Both of these kinds of cells will compute a zero result for all the individual values.
Likewise, split cells store no particles and will produce a zero result. This is because their sub-cells actually
contain the particles that are geometrically inside the split cell.

The vector or array can be accessed by any command that uses per-grid values from a compute as input. See
Section 4.4 for an overview of SPARTA output options.

The per-grid values for the column of output corresponding to lambda will will be in distance units.html. The
column corresponding to tau will be time distance divided by time units.html. Columns of corresponding to knall
or knx or kny or knz will be dimensionless.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section

181

of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

To use this compute, a collision style must be defined via the collide.html command, which defines properties for
the mixture species.

As explained above, to use this compute with nrho or temp defined as input from a fix_ave_grid.html ave/grid
command, this compute must only be invoked on timesteps that are multiples of the Nfreq argument used by the
fix, since those are the steps when it produces output.

One or more output values must be specified. The same output value cannot be repeated more than once. The knz
value cannot but used in a two-dimensional simulation.

Related commands:

compute grid, compute thermal/grid, fix ave/grid, dump grid

Default: none

(Bird94) G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford
(1994).

182

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute pflux/grid command

compute pflux/grid/kk command

Syntax:

compute ID pflux/grid group-ID mix-ID value1 value2 ...

ID is documented in compute command•
pflux/grid = style name of this compute command•
group-ID = group ID for which grid cells to perform calculation on•
mix-ID = mixture ID to perform calculation on•
one or more values can be appended•
values = momxx or momyy or momzz or momxy or momyz or momxz

momxx,momyy,momzz = diagonal components of momentum flux density tensor
momxy,momyz,momxz = off-diagonal components of momentum flux density tensor

•

Examples:

compute 1 pflux/grid all species momxx momyy momzz
compute 1 pflux/grid subset species momxx momxy

These commands will dump time averaged momentum flux densities for each species and each grid cell to a
dump file every 1000 steps:

compute 1 pflux/grid all species momxx momyy momzz
fix 1 ave/grid 10 100 1000 c_1[*]
dump 1 grid all 1000 tmp.grid id f_1[*]

Description:

Define a computation that calculates components of the momemtum flux density tensor for each grid cell in a grid
cell group. This is equivalent to the kinetic energy density tensor, and is based on the thermal velocity of the
particles in each grid cell. The values are tallied separately for each group of species in the specified mixture, as
described in the Output section below. See the mixture command for how a set of species can be partitioned into
groups.

Only grid cells in the grid group specified by group-ID are included in the calculations. See the group grid
command for info on how grid cells can be assigned to grid groups.

The values listed above rely on first computing and subtracting the center-of-mass (COM) velocity for all
particles in the group and grid cell from each particle to yield a thermal velocity. This thermal velocity is used to
compute the components of the momentum flux density tensor, as described below. This is in contrast to some of
the values tallied by the compute grid temp command which simply uses the full velocity of each particle to
compute a momentum or kinetic energy density. For non-streaming simulations, the two results should be similar,
but for streaming flows, they will be different.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump grid command.

183

https://sparta.github.io

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as
if the particles in the cell at each sampling timestep were combined together into one large set of particles to
compute the formulas below.

Note that the center-of-mass (COM) velocity that is subtracted from each particle to yield a thermal velocity for
each particle, as described below, is also computed over one large set of particles (across all timesteps), in
contrast to using a COM velocity computed only for particles in the current timestep, which is what the compute
sonine/grid command does.

Note that this is a different form of averaging than taking the values produced by the formulas below for a single
timestep, summing those values over the sampling timesteps, and then dividing by the number of sampling steps.

Calculation of the momentum flux density is done by first calcuating the center-of-mass (COM) velocity of
particles for each group within a grid cell. This is done as follows:

COMx = Sum_i (mass_i Vx_i) / Sum_i (mass_i)
COMy = Sum_i (mass_i Vy_i) / Sum_i (mass_i)
COMz = Sum_i (mass_i Vz_i) / Sum_i (mass_i)
Cx = Vx - COMx
Cy = Vy - COMy
Cz = Vz - COMz

The COM velocity is (COMx,COMy,COMz). The thermal velocity of each particle is (Cx,Cy,Cz), i.e. its velocity
minus the COM velocity of particles in its group and cell.

The momxx, momyy, momzz values compute the diagonal components of the momentum flux density tensor due to
particles in the group as follows:

momxx = fnum/volume Sum_i (mass_i Cx^2)
momyy = fnum/volume Sum_i (mass_i Cy^2)
momzz = fnum/volume Sum_i (mass_i Cz^2)

The momxy, momyz, momxz values compute the off-diagonal components of the momentum flux density tensor
due to particles in the group as follows:

momxy = fnum/volume Sum_i (mass_i Cx Cy)
momyz = fnum/volume Sum_i (mass_i Cy Cz)
momxz = fnum/volume Sum_i (mass_i Cx Cz)

Note that if particle weighting is enabled via the global weight command, then the volume used in the formula is
divided by the weight assigned to the grid cell.

Output info:

This compute calculates a per-grid array, with the number of columns equal to the number of values times the
number of groups. The ordering of columns is first by values, then by groups. I.e. if momxx and momxy values
were specified as keywords, then the first two columns would be momxx and momxy for the first group, the 3rd
and 4th columns would be momxx and momxy for the second group, etc.

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 6.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells. Note that cells inside closed surfaces contain no particles. These could be unsplit or cut cells (if they
have zero flow volume). Both of these kinds of cells will compute a zero result for all their values. Likewise, split
cells store no particles and will produce a zero result. This is because their sub-cells actually contain the particles

184

that are geometrically inside the split cell.

Grid cells not in the specified group-ID will output zeroes for all their values.

The array can be accessed by any command that uses per-grid values from a compute as input. See Section 6.4 for
an overview of SPARTA output options.

The per-grid array values will be in the units of momentum flux density = energy density = energy/volume units.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions: none

Related commands:

compute grid, compute thermal/grid, compute eflux/grid, fix ave/grid, dump grid

Default: none

185

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute property/grid command

compute property/grid/kk command

Syntax:

compute ID property/grid group-ID input1 input2 ...

ID is documented in compute command•
property/grid = style name of this compute command•
group-ID = group ID for which grid cells to perform calculation on•
input = one or more grid attributes

 possible attributes = id, proc, xlo, ylo, zlo, xhi, yhi, zhi, xc, yc, zc

 id = integer form of grid cell ID
 proc = processor that owns grid cell
 xlo,ylo,zlo = coords of lower left corner of grid cell
 xhi,yhi,zhi = coords of lower left corner of grid cell
 xc,yc,zc = coords of center of grid cell
 vol = flow volume of grid cell (area in 2d)

•

Examples:

compute 1 property/grid all id xc yc zc

Description:

Define a computation that simply stores grid attributes for each grid cell in a grid cell group. This is useful for
values which can be used by other output commands that take computes as inputs. See for example, the compute
reduce, fix ave/grid, dump grid, and grid-style variable commands.

Only grid cells in the grid group specified by group-ID are included in the calculation. See the group grid
command for info on how grid cells can be assigned to grid groups.

Id is the grid cell ID. In SPARTA each grid cell is assigned a unique ID which represents its logical location
within the hierarchical grid. This ID is stored as an integer such as 5774983, but can also be decoded into a string
such as 33-4-6, which makes it easier to understand the grid hierarchy. In this case it means the grid cell is at the
3rd level of the hierarchy. Its grandparent cell was 33 at the 1st level, its parent was cell 4 (at level 2) within cell
33, and the cell itself is cell 6 (at level 3) within cell 4 within cell 33. If you specify id, the ID is printed directly as
an integer. The ID in string format can be accessed by the dump grid command and its idstr argument.

Proc is the ID of the processor which currently owns the grid cell.

The xlo, ylo, zlo attributes are the coordinates of the lower-left corner of the grid cell in the appropriate distance
units. The xhi, yhi, zhi are the coordinates of the upper-right corner of the grid cell. The xc, yc, zc attributes are the
coordinates of the center point of the grid cell. The zlo, zhi, zc attributes cannot be used for a 2d simulation.

The vol attribute is the flow volume of the grid cell (or area in 2d). Flow volume is the portion of the grid cell that
is accessible to particles, i.e. outside any closed surface that may intersect the cell.

186

https://sparta.github.io

Output info:

This compute calculates a per-grid vector or per-grid array depending on the number of input values. If a single
input is specified, a per-grid vector is produced. If two or more inputs are specified, a per-grid array is produced
where the number of columns = the number of inputs.

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 6.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells. The id and xlo,ylo,zlo and xhi,yhi,zhi values for a split cell and its sub cells are all the same. The vol of a
cut cell is the portion of the cell in the flow. The vol of a split cell is the same as if it were unsplit. The vol of each
sub cell within a split cell is its portion of the flow volume.

Grid cells not in the specified group-ID will output zeroes for all their values.

The vector or array can be accessed by any command that uses per-atom values from a compute as input. See
Section 4.4 for an overview of SPARTA output options.

The vector or array values will be in whatever units the corresponding attribute is in, e.g. distance units for xlo or
xc.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

For 2d simulations, none of the attributes which refer to the 3rd dimension may be used.

Related commands:

dump grid, compute reduce, fix ave/grid

Default: none

187

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute property/surf command

Syntax:

compute ID property/surf group-ID input1 input2 ...

ID is documented in compute command•
property/surf = style name of this compute command•
group-ID = group ID for which surface elements to perform calculation on•
input = one or more surface element attributes

 possible attributes = id, v1x, v1y, v1z, v2x, v2y, v2z, v3x, v2y, v3z, xc, yc, zc, area, normx, normy, normz

 id = surface element ID
 v1x,v1y,v1z = coords of first line end point or triangle corner point
 v3x,v2y,v2z = coords of second line end point or triangle corner point
 v3x,v3y,v3z = coords of third triangle corner point
 xc,yc,zc = coords of center of line segment or triangle
 area = length of line segment or area of triangle
 normx, normy, normz = unit normal vector for line segment or triangle

•

Examples:

compute 1 property/surf all id xc yc zc

Description:

Define a computation that simply stores surface element attributes for each explicit surface element in a surface
group. This is useful for values which can be used by other output commands that take computes as inputs. See
for example, the compute reduce, fix ave/surf, dump surf, and surf-style variable commands.

Only surface elements in the surface group specified by group-ID are included in the calculation. See the group
surf command for info on how surface elements can be assigned to surface groups.

This command can only be used for simulations with explicit surface elements. Explicit surface elements are
triangles for 3d simulations and line segments for 2d simulations. Unlike implicit surface elements, each explicit
triangle or line segment may span multiple grid cells. See Section 4.9 of the manual for details.

Id is the surface element ID, as defined in the surface data file read by the read_surf comand.

The v1x, v1y, v1z attributes are the coordinates of the first end point of a line segment (2d) or first corner point of
a triangle (3d). Likewise, the v2x, v2y, v2z attributes are the coordinates of the second end point of a line segment
(2d) or second corner point of a triangle (3d). The v3x, v3y, v23z attributes are the coordinates of the third corner
point of a triangle (3d).

The xc, yc, zc attributes are the coordinates of the center point of a line segment or tringle.

The area attribute is the length of a line segment (distance units in 2d), or area of a triangle (area units in 3d).

The normx, normy, normz attributes are components of a unit normal perpendicular to the line segment or face of
the trangle. It points into the flow volume of the simulation.

188

https://sparta.github.io

Output info:

This compute calculates a per-surf vector or per-surf array depending on the number of input values. If a single
input is specified, a per-surf vector is produced. If two or more inputs are specified, a per-surf array is produced
where the number of columns = the number of inputs.

This compute performs calculations for each explicit surface element in the simulation.

Surface elements not in the specified group-ID will output zeroes for all their values.

The vector or array can be accessed by any command that uses per-surf values from a compute as input. See
Section 4.4 for an overview of SPARTA output options.

The vector or array values will be in whatever units the corresponding attribute is in, e.g. distance units for v1x or
xc, length units for area in 2d, area units for area in 3d.

Restrictions:

For 2d simulations, none of the attributes which refer to the 3rd dimension may be used. Likewise v3x, v3y, v3z
may not be used since they refer to triangles.

Related commands:

dump surf, fix ave/surf

Default: none

189

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute react/boundary command

Syntax:

compute ID react/boundary reaction-ID value1 value2 ...

ID is documented in compute command•
react/boundary = style name of this compute command•
reaction-ID = surface reaction ID which defines surface reactions•
zero or more values can be appended•
value = r:s1/s2/s3 ... or p:s1/s2/s3 ...

 r: or p: = list of reactant species or product species
 s1,s2,s3 = one or more species IDs, separated by "/" character

•

Examples:

surf_react air prob air.surf
compute 1 react/boundary air
compute 2 react/boundary air r:N/O/N2/O2 p:N/O/NO

These commands will time average the reaction tallies for each face and output the results as part of statistical
output:

compute 2 react/boundary air r:N/O/N2/O2 p:N/O/NO

fix 1 ave/time all 10 100 1000 c_2[*]
stats_style step np f_1[1][*] f_1[2][*] f_1[3][*] f_1[4][*]

Description:

Define a computation that tallies counts of reactions for each boundary (i.e. face) of the simulation box, based on
the particles that collide with the boundary. Only faces assigned to the surface reaction model specified by
reaction-ID are included in the tallying.

Note that when a particle collides with a face, it can bounce off (possibly as a different species), be captured by
the surface (vanish), or a 2nd particle can also be emitted.

The doc page for the surf_react command explains the different reactions that can occur for each specified style.

If no values are specified each reaction specified by the surf_react style is tallied individually for each boundary.

If M values are specified, then M tallies are made for each face, one per value. If the value starts with "r:" then
any reaction which occurs with one (or more) of the listed species as a reactant is counted as part of that tally. If
the value starts with "p:" then any reaction which occurs with one (or more) of the listed species as a product is
counted as part of that tally. Note that these rules mean that a single reaction may be tallied multiple times
depending on which values it matches.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the stats_style command. The values over many sampling timesteps can be averaged by the fix
ave/time command.

190

https://sparta.github.io

Output info:

This compute calculates a global array, with the number of columns either equal to the number of reactions
defined by the surf_react style (if no values are specified) or equal to M = the # of values specified. The number
of rows is 4 for a 2d simulation for the 4 faces (xlo, xhi, ylo, yhi), and it is 6 for a 3d simulation (xlo, xhi, ylo, yhi,
zlo, zhi).

The array can be accessed by any command that uses global array values from a compute as input. See Section
6.4 for an overview of SPARTA output options.

The array values are counts of the number of reactions that occurred on each face.

Restrictions: none

Related commands:

fix ave/time, compute react/surf

Default: none

191

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute react/isurf/grid command

Syntax:

compute ID react/isurf/grid group-ID reaction-ID value1 value2 ...

ID is documented in compute command•
react/isurf/grid = style name of this compute command•
group-ID = group ID for which grid cells to perform calculation on•
reaction-ID = ID of surface reaction model which defines surface reactions•
zero or more values can be appended•
value = r:s1/s2/s3 ... or p:s1/s2/s3 ...

 r: or p: = list of reactant species or product species
 s1,s2,s3 = one or more species IDs, separated by "/" character

•

Examples:

surf_react air prob air.surf
compute 1 react/isurf/grid all air
compute 2 react/isurf/grid all air r:N/O/N2/O2 p:N/O/NO

These commands will dump time averages for each grid cell to a dump file every 1000 steps:

compute 2 react/isurf/grid all air r:N/O/N2/O2 p:N/O/NO
fix 1 ave/grid all 10 100 1000 c_2[*]
dump 1 grid all 1000 tmp.surgrid id f_1[*]

Description:

Define a computation that tallies counts of reactions for each grid cell containing implicit surface elements, based
on the particles that collide with those elements. Only grid cells in the grid group specified by group-ID are
included in the tallying. See the group grid command for info on how grid cells can be assigned to grid groups.
Likewise only grid cells with surface elements assigned to the surface reaction model specified by reaction-ID are
included in the tallying. This assignment is done via the surf_modify command.

Implicit surface elements are triangles for 3d simulations and line segments for 2d simulations. Unlike explicit
surface elements, each triangle or line segment is wholly contained within a single grid cell. See the read_isurf
command for details.

This command can only be used for simulations with implicit surface elements. See the similar compute react/surf
command for use with simulations with explicit surface elements.

Note that when a particle collides with a surface element, it can bounce off (possibly as a different species), be
captured by the surface (vanish), or a 2nd particle can also be emitted.

The doc page for the surf_react command explains the different reactions that can occur for each specified style.

If no values are specified each reaction specified by the surf_react style is tallied individually for each grid cell.

If M values are specified, then M tallies are made for each grid cell, one per value. If the value starts with "r:"
then any reaction which occurs with one (or more) of the listed species as a reactant is counted as part of that

192

https://sparta.github.io

tally. If the value starts with "p:" then any reaction which occurs with one (or more) of the listed species as a
product is counted as part of that tally. Note that these rules mean that a single reaction may be tallied multiple
times depending on which values it matches.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command.

Output info:

This compute calculates a per-grid array, with the number of columns either equal to the number of reactions
defined by the surf_react style (if no values are specified) or equal to M = the # of values specified.

Grid cells not in the specified group-ID or whose implicit surfaces are not assigned to the specified reaction-ID
will output zeroes for all their values.

The array can be accessed by any command that uses per-grid values from a compute as input. See Section 6.4 for
an overview of SPARTA output options.

The per-grid array values are counts of the number of reactions that occurred on surface elements in that grid cell.

Restrictions: none

Related commands:

fix ave/grid, dump grid, compute react/surf

Default: none

193

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute react/surf command

Syntax:

compute ID react/surf group-ID reaction-ID value1 value2 ...

ID is documented in compute command•
react/surf = style name of this compute command•
group-ID = group ID for which surface elements to perform calculation on•
reaction-ID = surface reaction ID which defines surface reactions•
zero or more values can be appended•
value = r:s1/s2/s3 ... or p:s1/s2/s3 ...

 r: or p: = list of reactant species or product species
 s1,s2,s3 = one or more species IDs, separated by "/" character

•

Examples:

surf_react air prob air.surf
compute 1 react/surf all air
compute 2 react/surf all air r:N/O/N2/O2 p:N/O/NO

These commands will dump time averages for each surface element to a dump file every 1000 steps:

compute 2 react/surf all air r:N/O/N2/O2 p:N/O/NO
fix 1 ave/surf all 10 100 1000 c_2[*]
dump 1 surf all 1000 tmp.surf id f_1[*]

Description:

Define a computation that tallies counts of reactions for each explicit surface element in a surface element group,
based on the particles that collide with that element. Only surface elements in the surface group specified by
group-ID are included in the tallying. See the group surf command for info on how surface elements can be
assigned to surface groups. Likewise only surface elements assigned to the surface reaction model specified by
reaction-ID are included in the tallying.

Explicit surface elements are triangles for 3d simulations and line segments for 2d simulations. Unlike implicit
surface elements, each explicit triangle or line segment may span multiple grid cells. See the read_surf command
for details.

This command can only be used for simulations with explicit surface elements. See the similar compute
react/isurf/grid command for use with simulations with implicit surface elements.

Note that when a particle collides with a surface element, it can bounce off (possibly as a different species), be
captured by the surface (vanish), or a 2nd particle can also be emitted.

The doc page for the surf_react command explains the different reactions that can occur for each specified style.

If no values are specified each reaction specified by the surf_react style is tallied individually for each surface
element.

194

https://sparta.github.io

If M values are specified, then M tallies are made for each surface element, one per value. If the value starts with
"r:" then any reaction which occurs with one (or more) of the listed species as a reactant is counted as part of that
tally. If the value starts with "p:" then any reaction which occurs with one (or more) of the listed species as a
product is counted as part of that tally. Note that these rules mean that a single reaction may be tallied multiple
times depending on which values it matches.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump surf command.

The values over many sampling timesteps can be averaged by the fix ave/surf command.

Output info:

This compute calculates a per-surf array, with the number of columns either equal to the number of reactions
defined by the surf_react style (if no values are specified) or equal to M = the # of values specified.

Surface elements not in the specified group-ID or not assigned to the specified reaction-ID will output zeroes for
all their values.

The array can be accessed by any command that uses per-surf values from a compute as input. See Section 6.4 for
an overview of SPARTA output options.

The per-surf array values are counts of the number of reactions that occurred.

Restrictions: none

Related commands:

fix ave/surf, dump surf, compute react/isurf/grid

Default: none

195

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute reduce command

Syntax:

compute ID reduce mode input1 input2 ... keyword args ...

ID is documented in compute command•
reduce = style name of this compute command•
mode = sum or min or max or ave or sumsq or avesq or sum-area or ave-area•
one or more inputs can be listed•
input = x, y, z, vx, vy, vz, ke, erot, evib, c_ID, c_ID[N], f_ID, f_ID[N], v_name, p_name, p_name[N],
g_name, g_name[N], s_name, s_name[N]

 x,y,z,vx,vy,vz = particle position or velocity component
 ke,erot,evib = particle energy component
 c_ID = per-particle or per-grid vector calculated by a compute with ID
 c_ID[N] = Nth column of per-particle or per-grid array calculated by a compute with ID, N can include wildcard (see below)
 f_ID = per-particle or per-grid or per-surf vector calculated by a fix with ID
 f_ID[N] = Nth column of per-particle or per-grid or per-surf array calculated by a fix with ID, N can include wildcard (see below)
 v_name = per-particle or per-grid or per-surf vector calculated by a particle-style or grid-style or surf-style variable with name
 p_name = custom per-particle vector with name
 p_name[N] = Nth column of per-particle custom array with name, N can include wildcard (see below)
 g_name = custom per-grid vector with name
 g_name[N] = Nth column of per-grid custom array with name, N can include wildcard (see below)
 s_name = custom per-surf vector with name
 s_name[N] = Nth column of per-surf custom array with name, N can include wildcard (see below)

•

zero or more keyword/args pairs may be appended•
keyword = replace or subset

replace args = vec1 vec2
 vec1 = reduced value from this input vector will be replaced
 vec2 = replace it with vec1[N] where N is index of max/min value from vec2

subset arg = subsetID
 subsetID = mixture-ID or grid group-ID or surface group-ID

•

Examples:

compute 1 reduce sum c_grid[*]
compute 2 reduce min f_ave v_myKE subset trace_species
compute 3 reduce max c_mine[1] c_mine[2] c_temp replace 1 3 replace 2 3

These commands will include the average grid cell temperature, across all grid cells, in the stats output:

compute 1 temp
compute 2 grid all all temp
compute 3 reduce ave c_2[1]
stats_style step c_temp c_3

Description:

Define a calculation that "reduces" one or more vector inputs into scalar values, one per listed input. The inputs
can be per-particle or per-grid or per-surf quantities; they cannot be global quantities. Particle attributes are
per-particle quantities. Computes and fixes may generate any of the three kinds of quantities. Particle-style,
grid-style, and surf-style variables generate per-particle, per-grid, or per-surf quantities respectively. Custom
attributes can be per-particle, per-grid, or per-surf quantities. See the variable command and its special functions

196

https://sparta.github.io

which can perform the same operations as the compute reduce command on global vectors.

IMPORTANT NOTE: All inputs to a compute reduce command must be the same type: per-particle, per-grid, or
per-surf. You can use the command multiple times if you need to reduce values of different types.

The reduction operation is specified by the mode setting. The sum option adds the values in the vector into a
global total. The min or max operations find the minimum or maximum value across all vector values. The ave
operation adds the vector values into a global total, then divides by the number of values in the vector. The sumsq
operation sums the square of the values in the vector into a global total. The avesq oepration does the same as
sumsq, then divdes the sum of squares by the number of values. These two operations can be useful for
calculating the variance of some quantity, e.g. variance = sumsq - ave^2.

The sum-area or ave-area options can only be used for per-surf inputs. Both options multiply each per-surf value
by the area of the surface element (triangle in 3d, line segment in 2d) and sum the resulting values over all surface
elements. That is the output for the sum-area option. For the ave-area option the summed value is divided by the
summed area of all elements. Note that both of these options are designed to work with flux values (e.g. mass per
area per time) produced by the compute surf command with its default norm = yes option.

Each listed input vector is operated on independently.

Each listed input vector can be a particle attribute or can be the result of a compute or fix or the evaluation of a
variable. Or it can be a custom attribute of a particle, grid cell, or surface element.

Note that for values from a compute or fix or custom attribute, the bracketed index I can be specified using a
wildcard asterisk with the index to effectively specify multiple values. This takes the form "*" or "*n" or "n*" or
"m*n". If N = the size of the vector (for mode = scalar) or the number of columns in the array (for mode = vector),
then an asterisk with no numeric values means all indices from 1 to N. A leading asterisk means all indices from 1
to n (inclusive). A trailing asterisk means all indices from n to N (inclusive). A middle asterisk means all indices
from m to n (inclusive).

Using a wildcard is the same as if the individual columns of the array had been listed one by one. E.g. these 2
compute reduce commands are equivalent, since the compute grid command creates a per-grid array with 3
columns:

compute myGrid grid all all u v w
compute 2 all reduce min c_myGrid[*]
compute 2 all reduce min c_myGrid[1] c_myGrid[2] c_myGrid[3]

The particle attributes x,y,z,vx,vy,vz are position and velocity components. The ke,erot,evib attributes are for
kinetic, rotational, and vibrational energy of particles.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script.
Computes can generate per-particle or per-grid quantities. See the individual compute doc page for details. If no
bracketed integer is appended, the vector calculated by the compute is used. If a bracketed integer is appended,
the Nth column of the array calculated by the compute is used. Users can also write code for their own compute
styles and add them to SPARTA. See the discussion above for how N can be specified with a wildcard asterisk to
effectively specify multiple values.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. Fixes can
generate per-particle or per-grid or per-surf quantities. See the individual fix doc page for details. Note that some
fixes only produce their values on certain timesteps, which must be compatible with when this compute references
the values, else an error results. If no bracketed integer is appended, the vector calculated by the fix is used. If a
bracketed integer is appended, the Nth column of the array calculated by the fix is used. Users can also write code

197

for their own fix style and add them to SPARTA. See the discussion above for how N can be specified with a
wildcard asterisk to effectively specify multiple values.

If a value begins with "v_", a variable name must follow which has been previously defined in the input script. It
must be a particle-style or grid-style or surf-style variable. These styles define formulas which can reference stats
keywords or invoke other computes, fixes, or variables when they are evaluated. Particle-style variables can also
reference various per-particle attributes (position, velocity, etc). So these variables are a very general means of
creating per-particle or per-grid or per-surf quantities to reduce.

If a value begins with "p_" or "g_" or "s_", then a custom per-particle, per-grid, or per-surf attribute with the
specified name is used. Particles, grid cells, and surface elements can have custom attributes which store either
single or multiple values per particle, per grid cell, or per surface element. They can be defined and initialized in
data files, e.g. via the read_surf command. Or they can be defined and used by specific commands, e.g. fix
ambipolar or fix surf/temp or surf_react adsorb. The name of each attribute is set by the user or defined by the
command. See Section 6.17 for more discussion of custom attributes.

If no bracketed integer is appended, the custom attribute must be a per-particle, per-grid, or per-surf vector (single
value). If a bracketed integer is appended, the custom attribute must be a per-particle, per-grid, or per-surf arayy
(multiple values) and the Nth column of the custom array is used. See the discussion above for how N can be
specified with a wildcard asterisk to effectively specify multiple values.

If the replace keyword is used, two indices vec1 and vec2 are specified, where each index ranges from 1 to the #
of input values. The replace keyword can only be used if the mode is min or max. It works as follows. A min/max
is computed as usual on the vec2 input vector. The index N of that value within vec2 is also stored. Then, instead
of performing a min/max on the vec1 input vector, the stored index is used to select the Nth element of the vec1
vector.

Here is an example which prints out both the grid cell ID and number of particles for the grid cell with the
maximum number of particles:

compute 1 property/grid id
compute 2 grid all n
compute 3 reduce max c_1 c_2[1] replace 1 2
stats_style step c_temp c_3[1] c_3[2]

The first two input values in the compute reduce command are vectors with the ID and particle count of each grid
cell. Instead of taking the max of the ID vector, which does not yield useful information in this context, the
replace keyword will extract the ID for the grid cell which has the maximum number of particles. This ID and the
cell's particle count will be printed with the statistical output.

Note that the replace keyword can be used multiple times with different pairs of indices.

The subset keyword allows selection of a subset of each input vectors quantities to be used for the reduce
operation. This may affect all of the reduction operations. E.g. the ave and avesq operations will become averages
for only a subset of numerical values.

If inputs are per-particle values, then a mixture ID should be specified. Only particle species belonging to the
mixture will be included in the calculations. See the mixture command for how a set of species is included in a
mixture.

If inputs are per-grid values, then a grid group ID should be specified. Only grid cells in the grid group will be
included in the calculations. See the group grid command for info on how grid cells can be assigned to grid
groups.

198

If inputs are per-surf values, then a surface group ID should be specified. Only surface elements in the surface
group will be included in the calculations. See the group surf command for info on how surface elements can be
assigned to surface groups.

IMPORTANT NOTE: If computes or fixes are used as inputs to compute reduce, they may define their own
subsets of particles, grid cells, or surface elements which contribute to their output. Typically output from those
computes or fixes will be zero for grid cells or surface elements not in the grid or surface group specified for those
commands. Thus you may want to use an argument for the subset keyword which is consistent with the inputs, but
that is not required.

If a single input is specified this compute produces a global scalar value. If multiple inputs are specified, this
compute produces a global vector of values, the length of which is equal to the number of inputs specified.

Output info:

This compute calculates a global scalar if a single input value is specified or a global vector of length N where N
is the number of inputs, and which can be accessed by indices 1 to N. These values can be used by any command
that uses global scalar or vector values from a compute as input. See Section 6.4 for an overview of SPARTA
output options.

The scalar or vector values will be in whatever units the quantities being reduced are in.

Restrictions: none

Related commands:

compute, fix, variable

Default: none

199

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute sonine/grid command

compute sonine/grid/kk command

Syntax:

compute ID sonine/grid group-ID mix-ID keyword values ...

ID is documented in compute command•
sonine/grid = style name of this compute command•
group-ID = group ID for which grid cells to perform calculation on•
mix-ID = mixture ID to perform calculation on•
one or more keywords may be appended, multiple times•
keyword = a or b•
values = values for specific keyword

a args = dim order = sonine A moment
 dim = x or y or z
 order = number from 1 to 5

b args = dim2 order = sonine B moment
 dim2 = xx or yy or zz or xy or yz or xz
 order = number from 1 to 5

•

Examples:

compute 1 sonine/grid all air a x 5 b xy 5
compute 1 sonine/grid subset air a x 5

These commands will dump time averaged sonine moments for each species and each grid cell to a dump file
every 1000 steps:

compute 1 sonine/grid all species a x 5 b xy 5
fix 1 ave/grid 10 100 1000 c_1[*]
dump 1 grid all 1000 tmp.grid id f_1[*]

Description:

Define a computation that calculates the sonine moments of the velocity distribution of the particles in each grid
cell in a grid cell group. The values are tallied separately for each group of species in the specified mixture, as
described in the Output section below. See the mixture command for how a set of species can be partitioned into
groups.

Only grid cells in the grid group specified by group-ID are included in the calculations. See the group grid
command for info on how grid cells can be assigned to grid groups.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as
if the particles in the cell at each sampling timestep were combined together into one large set of particles to
compute the A,B formulas below.

200

https://sparta.github.io

Note however that the center-of-mass (COM) velocity that is subtracted from each particle to yield a squared
thermal velocity Csq for each particle, as described below, is the COM velocity for only the particles in the
current timestep. When time-averaging it is NOT the COM velocity for all particles across all timesteps.

Note that this is a different form of averaging than taking the values produced by the formulas below for a single
timestep, summing those values over the sampling timesteps, and then dividing by the number of sampling steps.

Calculation of both the A and B sonine moments is done by first calcuating the center-of-mass (COM) velocity of
particles for each group within a grid cell. This is done as follows:

COMx = Sum_i (mass_i Vx_i) / Sum_i (mass_i)
COMy = Sum_i (mass_i Vy_i) / Sum_i (mass_i)
COMz = Sum_i (mass_i Vz_i) / Sum_i (mass_i)
Cx = Vx - COMx
Cy = Vy - COMy
Cz = Vz - COMz
Csq = Cx*Cx + Cy*Cy + Cz*Cz

The COM velocity is (COMx,COMy,COMz). The thermal velocity of each particle is (Cx,Cy,Cz), i.e. its velocity
minus the COM velocity of particles in its group and cell. This allows computation of Csq for each particle which
is used in the formulas below to calculate the sonine moments.

The a keyword calculates the average of one or more sonine A moments for all particles in each group:

A1 = Sum_i (mass_i * Vdim * pow(Csq,1)) / Sum_i (mass_i)
A2 = Sum_i (mass_i * Vdim * pow(Csq,2)) / Sum_i (mass_i)
A3 = Sum_i (mass_i * Vdim * pow(Csq,3)) / Sum_i (mass_i)
A4 = Sum_i (mass_i * Vdim * pow(Csq,4)) / Sum_i (mass_i)
A5 = Sum_i (mass_i * Vdim * pow(Csq,5)) / Sum_i (mass_i)

Vdim is Vx or Vy or Vz as specified by the dim value. Csq is the squared thermal velocity of the particle, as in the
COM equations above. The number of moments computed is specified by the order value, e.g. for order = 3, the
first 3 moments are computed, which leads to 3 columns of output as explained below.

The b keyword calculates the average of one or more sonine B moments for all particles in each group:

B1 = Sum_i (mass_i * Vdim1 * Vdim2 * pow(Csq,1)) / Sum_i (mass_i)
B2 = Sum_i (mass_i * Vdim1 * Vdim2 * pow(Csq,2)) / Sum_i (mass_i)
B3 = Sum_i (mass_i * Vdim1 * Vdim2 * pow(Csq,3)) / Sum_i (mass_i)
B4 = Sum_i (mass_i * Vdim1 * Vdim2 * pow(Csq,4)) / Sum_i (mass_i)
B5 = Sum_i (mass_i * Vdim1 * Vdim2 * pow(Csq,5)) / Sum_i (mass_i)

Vdim is Vx or Vy or Vz as specified by the dim value. Csq is the squared thermal velocity of the particle, as in the
COM equations above. The number of moments computed is specified by the order value, e.g. for order = 2, the
first 2 moments are computed, which leads to 2 columns of output as explained below.

Output info:

This compute calculates a per-grid array, with the number of columns equal to the number of values times the
number of groups. The ordering of columns is first by values, then by groups. I.e. if the a z 3 and b xy 2 moments
were specified as keywords, then the 1st thru 3rd columns would be the A1, A2, A3 moments of the first group,
the 4th and 5th columns would be the B1 and B2 moments of the first group, the 6th thru 8th columns would be
the A1, A2, A3 moments of the 2nd group, etc.

201

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 6.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells. Note that cells inside closed surfaces contain no particles. These could be unsplit or cut cells (if they
have zero flow volume). Both of these kinds of cells will compute a zero result for all their values. Likewise, split
cells store no particles and will produce a zero result. This is because their sub-cells actually contain the particles
that are geometrically inside the split cell.

Grid cells not in the specified group-ID will have zeroes for all their values.

The array can be accessed by any command that uses per-grid values from a compute as input. See Section 6.4 for
an overview of SPARTA output options.

The per-grid array values will be in the units appropriate to the individual values as described above. These are
units like velocity cubed or velocity to the 6th power.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions: none

Related commands:

fix ave/grid, dump grid

Default: none

202

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute surf command

compute surf/kk command

Syntax:

compute ID surf group-ID mix-ID value1 value2 ... keyword setting ...

ID is documented in compute command•
surf = style name of this compute command•
group-ID = group ID for which surface elements to perform calculation on•
mix-ID = mixture ID for particles to perform calculation on•
one or more values can be appended•
value = n or nwt or nflux or nflux_incident or mflux or mflux_incident or fx or fy or fz or tx or ty or tz or
press or px or py or pz or shx or shy or shz or ke

 n = count of particles hitting surface element
 nwt = weighted count of particles hitting surface element
 nflux = net flux of particles through surface element
 nflux_incident = incident flux of particles on surface element
 mflux = net flux of mass through surface element
 mflux_incident = incident flux of mass on surface element
 fx,fy,fz = components of force on surface element
 tx,ty,tz = components of torque on body center-of-mass
 press = magnitude of normal pressure on surface element
 px,py,pz = components of normal pressure on surface element
 shx,shy,shz = components of shear stress on surface element
 ke = flux of particle kinetic energy on surface element
 erot = flux of particle rotational energy on surface element
 evib = flux of particle vibrational energy on surface element
 echem = flux of particle chemical catalytic energy on surface element
 etot = flux of particle total energy on surface element

•

zero or more keyword/setting pairs can be appended•
keyword = norm or com

 norm arg = flux or flow for dividing flux quantities by area or not
 com args = Cx Cy Cz = coords of center-of-mass of body for calculating torque

•

Examples:

compute 1 surf all all n press etot
compute mine surf sphere species press shx shy shz
compute 2 surf all all mflux ke erot norm flow

These commands will dump time averages for each species and each surface element to a dump file every 1000
steps:

compute 1 surf all species n press shx shy shz
fix 1 ave/surf all 10 100 1000 c_1[*]
dump 1 surf all 1000 tmp.surf id f_1[*]

These commands will time-average the force on each surface element then sum them across element to compute
drag (fx) and lift (fy) on the body:

compute 1 surf all all fx fy

203

https://sparta.github.io

fix 1 ave/surf all 10 100 1000 c_1[*]
compute 2 reduce sum f_1[1] f_1[2]
stats 1000
stats_style step cpu np c_2[1] c_2[2]

Description:

Define a computation that calculates one or more values for each explicit surface element in a surface element
group, based on the particles that collide with that element or are emitted from it. The values are summed for each
group of species in the specified mixture. See the mixture command for how a set of species can be partitioned
into groups. Only surface elements in the surface group specified by group-ID are included in the calculations.
See the group surf command for info on how surface elements can be assigned to surface groups.

This command can only be used for simulations with explicit surface elements. See the similar compute isurf/grid
command for use with simulations with implicit surface elements.

Explicit surface elements are triangles for 3d simulations and line segments for 2d simulations. Unlike implicit
surface elements, each explicit triangle or line segment may span multiple grid cells. See Section 4.9 of the
manual for details.

Note that when a particle collides with a surface element, it can bounce off (possibly as a different species), be
captured by the surface (vanish), or a 2nd particle can also be emitted. Additionally, surface elements can emit
particles directly -- see the fix_emit_surf command doc page. The formulas below account for all these possible
outcomes. For example, the kinetic energy flux ke onto a suface element for a single collision includes a positive
contribution from the incoming particle and negative contributions from 0, 1, or 2 outgoing particles. The
exception is the n and nwt values which simply tally counts of particles colliding with the surface element.

If the explicit surface element is transparent, the particle will pass through the surface unaltered. See the
transparent keyword for the read_surf command. The count of particles going through the surfacce as well as their
mass or energy fluxes can still be tallied by this compute. See details on transparent surface elements below.

Also note that all values for a collision are tallied based on the species group of the incident particle. Quantities
associated with outgoing particles are part of the same tally, even if they are in different species groups.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump surf command.

The values over many sampling timesteps can be averaged by the fix ave/surf command. It does its averaging as if
the particles striking the surface element at each sampling timestep were combined together into one large set to
compute the formulas below. The answer is then divided by the number of sampling timesteps if it is not
otherwise normalized by the number of particles. Note that in general this is a different normalization than taking
the values produced by the formulas below for a single timestep, summing them over the sampling timesteps, and
then dividing by the number of sampling steps. However for the current values listed below, the two
normalization methods are the same.

NOTE: If particle weighting is enabled via the global weight command, then all of the values below are scaled by
the weight assigned to the grid cell in which the particle collision with the surface element occurs. The only
exception is the the n value, which is NOT scaled by the weight; it is a simple count of particle collisions with the
surface element.

The n value counts the number of particles in the group striking the surface element.

204

The nwt value counts the number of particles in the group striking the surface element and weights the count by
the weight assigned to the grid cell in which the particle collision with the surface element occurs. The nwt
quantity will only be different than n if particle weighting is enabled via the global weight command.

The nflux and nflux_incident values calculate the net and incident number flux imparted to the surface element by
particles in the group respectively. Incident flux sums over all the impacting particles, while net flux subtracts out
reflected particles and includes effects from surface chemistry such as particle deletion. These are computed as

Nflux = N / (A * dt / fnum)

where N is the number of all contributing particles, normalized by A = the area of the surface element, dt = the
timestep, and fnum = the real/simulated particle ratio set by the global fnum command.

If the optional norm key is set to flow, then the area A is not included in the Nflux formula. The Nflux quantity
becomes effectively a particle flow rate (count per time). See discussion of the norm keyword below.

The mflux and mflux_incident values calculate the net and incident mass flux imparted to the surface element by
particles in the group respectively. These are computed as

Mflux = Sum_i (mass_i) / (A * dt / fnum)

where the sum is over all contributing particle masses, normalized by the area of the surface element, dt and fnum
as defined before.

If the optional norm key is set to flow, then the area A is not included in the Nflux formula. Then Mflux quantity
becomes effectively a mass flow rate (mass per time). See discussion of the norm keyword below.

The fx, fy, fz values calculate the xyz components of force exerted on the surface element by particles in the
group. These are computed as

p_delta = mass * (V_post - V_pre)
Fx = - Sum_i (p_delta_x) / (dt / fnum)
Fy = - Sum_i (p_delta_y) / (dt / fnum)
Fz = - Sum_i (p_delta_z) / (dt / fnum)

where p_delta is the change in momentum of a particle, whose velocity changes from V_pre to V_post when
colliding with the surface element. The force exerted on the surface element is the sum over all contributing
p_delta, normalized by dt and fnum as defined before.

The tx, ty, tz values calculate the xyz components of torque Tq exerted on the entire body by particles in the group
colliding with this surface element. Use of these values requires the the center-of-mass (COM) of the body be
specified so the torque can be calculated around the COM. The COM can be the geometric center of a
triangulated object, or it can reflect an uneven distribution of mass within the body. The torque components are
computed as

p_delta = mass * (V_post - V_pre)
force = p_delta / (dt / fnum)
R = Xcollide - Xcom
Tq = R x force

where p_delta is the change in momentum of a particle, whose velocity changes from V_pre to V_post when
colliding with the surface element. The vector R is from the COM specified by the com keyword Xcollide = the
collision point on the surface. The force exerted on then the surface element is the sum over all contributing
p_delta, normalized by dt and fnum as defined before.

205

Note that if the surfaces defined in a simulation represent multiple objects each with their own COM, then you
should use this command multiple times with different surface groups, if you want to calculate the torque on each
object.

The press value calculates the pressure P exerted on the surface element in the normal direction by particles in the
group, such that outward pressure is positive. This is computed as

p_delta = mass * (V_post - V_pre)
P = Sum_i (p_delta_i dot N) / (A * dt / fnum)

where p_delta, V_pre, V_post, dt, fnum are defined as before. The pressure exerted on the surface element is the
sum over all contributing p_delta dotted into the outward normal N of the surface element, also normalized by A
= the area of the surface element.

The px, py, pz values calculate the normal pressure Px, Py, Pz extered on the surface element in the direction of its
normal by particles in the group, with respect to the x, y, z coordinate axes. These are computed as

p_delta = mass * (V_post - V_pre)
p_delta_n = (p_delta dot N) N
Px = - Sum_i (p_delta_n_x) / (A * dt / fnum)
Py = - Sum_i (p_delta_n_y) / (A * dt / fnum)
Pz = - Sum_i (p_delta_n_z) / (A * dt / fnum)

where p_delta, V_pre, V_post, N, A, and dt are defined as before. P_delta_n is the normal component of the
change in momentum vector p_delta of a particle. P_delta_n_x (and y,z) are its x, y, z components.

The shx, shy, shz values calculate the shear pressure Sx, Sy, Sz extered on the surface element in the tangential
direction to its normal by particles in the group, with respect to the x, y, z coordinate axes. These are computed as

p_delta = mass * (V_post - V_pre)
p_delta_t = p_delta - (p_delta dot N) N
Sx = - Sum_i (p_delta_t_x) / (A * dt / fnum)
Sy = - Sum_i (p_delta_t_y) / (A * dt / fnum)
Sz = - Sum_i (p_delta_t_z) / (A * dt / fnum)

where p_delta, V_pre, V_post, N, A, and dt are defined as before. P_delta_t is the tangential component of the
change in momentum vector p_delta of a particle. P_delta_t_x (and y,z) are its x, y, z components.

The ke value calculates the kinetic energy flux Eflux imparted to the surface element by particles in the group,
such that energy lost by a particle is a positive flux. This is computed as

e_delta = 1/2 mass (V_post^2 - V_pre^2)
Eflux = - Sum_i (e_delta) / (A * dt / fnum)

where e_delta is the kinetic energy change in a particle, whose velocity changes from V_pre to V_post when
colliding with the surface element. The energy flux imparted to the surface element is the sum over all
contributing e_delta, normalized by A = the area of the surface element and dt = the timestep and fnum = the
real/simulated particle ratio set by the global fnum command.

If the optional norm key is set to flow, then the area A is not included in the Eflux formula. Then Eflux quantity
becomes effectively an energy flow rate (energy per time). See discussion of the norm keyword below.

The erot value calculates the rotational energy flux Eflux imparted to the surface element by particles in the
group, such that energy lost by a particle is a positive flux. This is computed as

206

e_delta = Erot_post - Erot_pre
Eflux = - Sum_i (e_delta) / (A * dt / fnum)

where e_delta is the rotational energy change in a particle, whose internal rotational energy changes from
Erot_pre to Erot_post when colliding with the surface element. The flux equation is the same as for the ke value.

If the optional norm key is set to flow, then the area A is not included in the Eflux formula. Then Eflux quantity
becomes effectively an energy flow rate (energy per time). See discussion of the norm keyword below.

The evib value calculates the vibrational energy flux Eflux imparted to the surface element by particles in the
group, such that energy lost by a particle is a positive flux. This is computed as

e_delta = Evib_post - Evib_pre
Eflux = - Sum_i (e_delta) / (A * dt / fnum)

where e_delta is the vibrational energy change in a particle, whose internal vibrational energy changes from
Evib_pre to Evib_post when colliding with the surface element. The flux equation is the same as for the ke value.

If the optional norm key is set to flow, then the area A is not included in the Eflux formula. Then Eflux quantity
becomes effectively an energy flow rate (energy per time). See discussion of the norm keyword below.

The echem value calculates the chemical catalytic energy flux Eflux imparted to the surface element by particles
in the group, such that energy lost by a particles recombining is a positive flux. This is computed as

Eflux = - Sum_i (e_recomb) / (A * dt / fnum)

where e_recomb is the catalytic chemical energy of a particle pair (positive for an exothermic recombination
reaction). The flux equation is the same as for the ke value. This option applies only to the prob style of surface
reations. A value of 0.0 will be returned for other styles of surface reactions, e.g. global and adsorb.

The etot value calculates the total energy flux imparted to the surface element by particles in the group, such that
energy lost by a particle is a positive flux. This is simply the sum of kinetic, rotational, and vibrational energies.
Thus the total energy flux is the sum of what is computed by the ke, erot, and evib values.

If the optional norm key is set to flow, then the area A is not included in the etot formula. Then etot quantity
becomes effectively an energy flow rate (energy per time). See discussion of the norm keyword below.

Transparent surface elements:

This compute will tally information on particles that pass through transparent surface elements. The Section 6.15
doc page provides an overview of transparent surfaces and how to create them.

The n and nwt value are calculated the same for transparent surfaces as for non-transparent. I.e. they are the count
and weighted count of particles passing through the surface.

The nflux, mflux, ke, erot. evib, echem, and etot values are fluxes. For transparent surfaces, they are calculated
only for the incident particle as if it had struck the surface. The outgoing particle is ignored. This means the tally
quantity is the flux of particles onto the outward face of the surface. No tallying is done for particles hitting the
inward face of the transparent surface. See Section 6.15 for how to do tallying in both directions.

All the other values are calculated as described above. This means they will be zero, since the incident and
outgoing particle have the same mass and velocity.

207

IMPORTANT NOTE:

Transparent surface elements can intersect standard non-transparent surface elements. For example, to model flow
around a spherical object, the sphere would be defined by the usual non-transparent triangles which interact with
flow particles. A plane of transparent surface elements normal to the flow direction could be defined which cut
through the sphere. In this case some or all of the transparent triangles will be partially or wholly inside the
sphere. SPARTA does not attempt to calculate the portion of a tranparent triangle (or line segment in 2d) which is
inside the flow volume. The "area" specified in all the formulas above will be the area of the entire transparent
triangle (or line segment in 2d), which may or may not be what you want.

See the optional norm keyword (below) to calculate flux values un-normalized by the surface element area. Also
see the "sum-area" and "ave-area" modes of the compute reduce command for additional ways to sum or average
either normalized or un-normalized flux values produced by this compute.

Optional keywords

If the norm keyword is used with a setting of flow, then the formulas above for all flux values will not use the
surface element area A in the denominator. Specifically these values are nflux, mflux, ke, erot, evib, etot.

The formulas thus compute the aggregate mass or energy flow to the surface (e.g. mass per time), not the flux
(e.g. mass per area per time).

If the norm keyword setting is flux (the default), then the flux formulas will be calculated as shown with the area
A in the denominator.

The com keyword is only used if torque is being computed by any of the tx, ty, tz values. The Cx, Cy, Cz settings
are the coordinates of the center-of-mass of the body around which the torque will be calculated.

Output info:

This compute calculates a per-surf array, with the number of columns equal to the number of values times the
number of groups. The ordering of columns is first by values, then by groups. I.e. if the n and u values were
specified as keywords, then the first two columns would be n and u for the first group, the 3rd and 4th columns
would be n and u for the second group, etc.

Surface elements not in the specified group-ID will output zeroes for all their values.

The array can be accessed by any command that uses per-surf values from a compute as input. See Section 6.4 for
an overview of SPARTA output options.

The per-surf array values will be in the units appropriate to the individual values as described above. N is unitless.
Press, px, py, pz, shx, shy, shz are in in pressure units. Ke, erot, evib, echem, and etot are in energy/area-time units
for 3d simulations and energy/length-time units for 2d simulations.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

208

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions: none

Related commands:

fix ave/surf, dump surf, compute isurf/grid

Default:

The default for the norm keyword is flux.

209

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute temp command

compute temp/kk command

Syntax:

compute ID temp

ID is documented in compute command•
temp = style name of this compute command•

Examples:

compute 1 temp
compute myTemp temp

Description:

Define a computation that calculates the temperature of all particles.

The temperature is calculated by the formula KE = dim/2 N kB T, where KE = total kinetic energy of the particles
(sum of 1/2 m v^2), dim = dimensionality of the simulation, N = number of particles, kB = Boltzmann constant,
and T = temperature.

Note that this definition of temperature does not subtract out a net streaming velocity for particles, so it is not a
thermal temperature when the particles have a non-zero streaming velocity. See the compute thermal/grid
command for calculation of thermal temperatures on a per grid cell basis.

Output info:

This compute calculates a global scalar (the temperature). This value can be used by any command that uses
global scalar values from a compute as input. See Section 6.4 for an overview of SPARTA output options.

The scalar value will be in temperature units.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions: none

210

https://sparta.github.io

Related commands: none

Default: none

211

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute thermal/grid command

compute thermal/grid/kk command

Syntax:

compute ID thermal/grid group-ID mix-ID value1 value2 ...

ID is documented in compute command•
thermal/grid = style name of this compute command•
group-ID = group ID for which grid cells to perform calculation on•
mix-ID = mixture ID to perform calculation on•
one or more values can be appended•
value = temp or press

temp = temperature
press = pressure

•

Examples:

compute 1 thermal/grid all species temp
compute 1 thermal/grid subset air temp press

These commands will dump time averaged thermal temperatures for each species and each grid cell to a dump file
every 1000 steps:

compute 1 thermal/grid species temp
fix 1 ave/grid 10 100 1000 c_1[*]
dump 1 grid all 1000 tmp.grid id f_1[*]

Description:

Define a computation that calculates one or more values for each grid cell in a grid cell group, which are based on
the thermal temperature of the particles in each grid cell. The values are tallied separately for each group of
species in the specified mixture, as described in the Output section below. See the mixture command for how a set
of species can be partitioned into groups.

Only grid cells in the grid group specified by group-ID are included in the calculation. See the group grid
command for info on how grid cells can be assigned to grid groups.

The values listed above rely on first computing a thermal temperature which subtracts the center-of-mass (COM)
velocity for all particles in the group and grid cell from each particle to yield a thermal velocity. This thermal
velocity is used to compute the temperature, as described below. This is in contrast to some of the values tallied
by the compute grid temp command which simply uses the full velocity of each particle to compute a temperature.
For non-streaming simulations, the two results should be similar, but for streaming flows, they will be different.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as
if the particles in the cell at each sampling timestep were combined together into one large set of particles to

212

https://sparta.github.io

compute the formulas below.

Note that this is a different form of averaging than taking the values produced by the formulas below for a single
timestep, summing those values over the sampling timesteps, and then dividing by the number of sampling steps.

Also note that the center-of-mass (COM) velocity that is subtracted from each particle to yield a squared thermal
velocity Csq for each particle, as described below, is also computed over one large set of particles (across all
timesteps). This is in contrast to using a COM velocity computed only for particles in the current timestep, which
is what the compute sonine/grid command does.

Calculation of the thermal temperature is done by first calcuating the center-of-mass (COM) velocity of particles
for each group within a grid cell. This is done as follows:

COMx = Sum_i (mass_i Vx_i) / Sum_i (mass_i)
COMy = Sum_i (mass_i Vy_i) / Sum_i (mass_i)
COMz = Sum_i (mass_i Vz_i) / Sum_i (mass_i)
Cx = Vx - COMx
Cy = Vy - COMy
Cz = Vz - COMz
Csq = Cx*Cx + Cy*Cy + Cz*Cz

The COM velocity is (COMx,COMy,COMz). The thermal velocity of each particle is (Cx,Cy,Cz), i.e. its velocity
minus the COM velocity of particles in its group and cell. This allows computation of Csq for each particle which
is used to calculate the total kinetic energy due to particles in the group as follows:

thermal_KE = Sum_i (1/2 mass_i Csq_i)

The temp value computes the thermal temperature T, due to particles in each group:

T = thermal_KE / (3/2 N kB)

The press value uses the thermal_KE to compute a pressure P for the grid cell due to particles in the group:

P = 2/3 fnum/volume * thermal_KE

Note that if multiple groups are defined in the mixture, one group's value is effectively a partial pressure due to
particles in the group. When accumulated over multiple sampling steps, this value is normalized by the number of
sampling steps. Note that if particle weighting is enabled via the global weight command, then the volume used in
the formula is divided by the weight assigned to the grid cell.

Output info:

This compute calculates a per-grid array, with the number of columns equal to the number of values times the
number of groups. The ordering of columns is first by values, then by groups. I.e. if the temp and press values
were specified as keywords, then the first two columns would be temp and press for the first group, the 3rd and
4th columns would be temp and press for the second group, etc.

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 6.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells. Note that cells inside closed surfaces contain no particles. These could be unsplit or cut cells (if they
have zero flow volume). Both of these kinds of cells will compute a zero result for all their values. Likewise, split
cells store no particles and will produce a zero result. This is because their sub-cells actually contain the particles
that are geometrically inside the split cell.

213

Grid cells not in the specified group-ID will output zeroes for all their values.

The array can be accessed by any command that uses per-grid values from a compute as input. See Section 6.4 for
an overview of SPARTA output options.

The per-grid array values will be in the units appropriate to the individual values as described above. Temp is in
temperature units. Press is in prsesure units.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions: none

Related commands:

compute grid, fix ave/grid, dump grid

Default: none

214

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

compute tvib/grid command

Syntax:

compute ID tvib/grid group-ID mix-ID keyword ...

ID is documented in compute command•
tvib/grid = style name of this compute command•
group-ID = group ID for which grid cells to perform calculation on•
mix-ID = mixture ID to perform calculation on•
zero or more keywords can follow

 possible keywords = mode
 mode = output one temperature per vibrational mode

•

Examples:

compute 1 tvib/grid all species
compute 1 tvib/grid subset all
compute 1 tvib/grid all species mode

Description:

Define a computation that calculates the vibrational temperature for each grid cell in a grid cell group, based on
the particles in the cell. How the vibrational temperature is computed is explained below. The temperature is
calculated separately for each group of species in the specified mixture, as described in the Output section below.
See the mixture command for how a set of species can be partitioned into groups.

Only grid cells in the grid group specified by group-ID are included in the calculations. See the group grid
command for info on how grid cells can be assigned to grid groups.

The results of this compute can be used by different commands in different ways. The values for a single timestep
can be output by the dump grid command.

The values over many sampling timesteps can be averaged by the fix ave/grid command. It does its averaging as
if the particles in the cell at each sampling timestep were combined together into one large set to compute the
formulas below. Note that this is a different normalization than taking the values produced by the formulas below
for a single timestep, summing them over the sampling timesteps, and then dividing by the number of sampling
steps.

If the mode keyword is specified, then temperatures for each vibrational mode of each polyatomic species are
calculated and output as explained below. To use this option, the collide_modify vibrate discrete option must be
set, and the "fix vibmode" command must be used to store info about individual vibrational modes with each
particle.

The vibrational temperature in a grid cell for a group of particles comprised of different species and (optionally)
different vibrational modes is defined as a weighted average as follows:

T_group = (T1*N1 + T2*N2 + ...) / (N1 + N2 + ...)

What is summed over in the numerator and denominator depends on several settings.

215

https://sparta.github.io

If the collide_modify vibrate setting is no, then no vibrational energy is assigned to particles. All the output
temperatures will be 0.0.

If the collide_modify vibrate setting is smooth, then the sums in the numerator and denominator are over the
different species in the group. T1, T2, ... are the vibrational temperatures of each species. N1, N2, ... are the
counts of particles of each species.

The vibrational temperature Tsp for particles of a single species is defined as follows:

Ibar = Sum_i (e_vib_i) / (N kB Theta)
Tsp = Theta / ln(1 + 1/Ibar))

where e_vib is the continuous (smooth) vibrational energy of a single particle I, N is the total # of particles of that
species, and kB is the Boltzmann factor. Theta is the characteristic vibrational temperature for the species, as
defined in the file read by the species command.

If the collide_modify vibrate setting is discrete, but no species has a vibrational DOF setting that implies multiple
vibrational modes (vibdof = 4,6,8), then the calulation of vibrational temeperatures is the same as for
collide_modify vibrate smooth. See the species command and its description of the per-species "vibdof" setting in
the species file.

If the collide_modify vibrate setting is discrete, and one or more species have vibrational DOF settings that imply
multiple vibrational modes (vibdof = 4,6,8), as defined by the species command, then the sums in the numerator
and denominator are over the different species in the group and the modes for each species. For example if
species CO2 has vibdof=6, then it has 3 modes. Three terms in the numerator and demoninator are included when
CO2 is a species in the group.

The vibrational temperature Tsp_m for particles of a single species and single mode M is defined as follows:

Ibar_m = Sum_i (level_im) / (N)
Tsp_m = Theta_m / ln(1 + 1/Ibar_m))

where level_im is the integer level for mode M of a single particle I, and N is the total # of particles of that
species. Theta_m is the characteristic vibrational temperature for the species and its mode M, as defined in the
vibfile read by the species command.

Finally, if the mode keyword is used, then the output of this compute is not Ngroup vibrational temperatures, but
rather Ngroup*Nmode vibrational temperatures, where Nmode is the maximum # of vibrational modes associated
with any species in the system (not just in the mixture). Thus the sums in the numerator and denominator are over
the different species in the group but for only a single modes of each of those species. If the species does not
define that mode, then its contribution is zero. For example if species CO2 has vibdof=6, then it has 3 modes. For
the group it is in, it will contribute to 3 output temperature values, one for mode 1, another for mode 2, another for
mode 3.

The vibrational temperature Tsp_m for particles of a single species and single mode M is calculated the same as
explained above.

Output info:

This compute calculates a per-grid array. If the mode keyword is not specified, the number of columns is equal to
the number of groups in the specified mixture. If is is specified, the number of columns is equal to the number of
groups in the specified mixture times the maximum number of vibrational modes defined for any species in the
system (not just in the mixture). The ordering of the columns is as follows: T11, T12, T13, T21, T22, T23, T31, ...

216

TN1, TN2, TN3. Where the first index is the group from 1 to N, and the second index is the vibrational mode (1
to 3 in this example).

This compute performs calculations for all flavors of child grid cells in the simulation, which includes unsplit, cut,
split, and sub cells. See Section 4.8 of the manual gives details of how SPARTA defines child, unsplit, split, and
sub cells. Note that cells inside closed surfaces contain no particles. These could be unsplit or cut cells (if they
have zero flow volume). Both of these kinds of cells will compute a zero result for all their values. Likewise, split
cells store no particles and will produce a zero result. This is because their sub-cells actually contain the particles
that are geometrically inside the split cell.

Grid cells not in the specified group-ID will output zeroes for all their values.

The array can be accessed by any command that uses per-grid values from a compute as input. See Section 4.4 for
an overview of SPARTA output options.

The per-grid array values will be in temperature units.

Restrictions: none

Related commands:

compute grid

Default: none

217

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

create_box command

Syntax:

create_box xlo xhi ylo yhi zlo zhi

xlo,xhi = box bounds in the x dimension (distance units)
ylo,yhi = box bounds in the y dimension (distance units)
zlo,zhi = box bounds in the z dimension (distance units)

Examples:

create_box 0 1 0 1 0 1
create_box 0 1 0 1 -0.5 0.5
create_box 0 10.0 0 5.0 -4.0 0.0

Description:

Set the size of the simulation box.

For a 2d simulation, as specifed by the dimension command, zlo < 0.0 and zhi > 0.0 is required. This means the z
dimensions straddle 0.0. Typical values are -0.5 and 0.5, but this is not required. See Section 6.1 of the manual for
more information about 2d simulations.

For 2d axisymmetric simulations, as set by the dimension and boundary commands, the ylo setting must be 0.0.
See Section 6.2 of the manual for more information about axisymmetric simulations.

Restrictions: none

Related commands: none

Default: none

218

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

create_grid command

Syntax:

create_grid Nx Ny Nz keyword args ...

Nx,Ny,Nz = size of 1st-level grid in each dimension•
zero or more keywords/args pairs may be appended•
keyword = block or clump or random or stride or levels or subset or region or inside

block args = Px Py Pz
 Px,Py,Pz = # of processors in each dimension, any can be * (see below)

clump arg = xyz or xzy or yxz or yzx or zxy or zyx
random args = none
stride arg = xyz or xzy or yxz or yzx or zxy or zyx
levels arg = Nlevels
subset args = Ilevel Px Py Pz Cx Cy Cz

 Ilevel = which level(s) to define, see syntax below
 Px Py Pz = extent of parent cells in each dimension in which to create child cells
 Cx Cy Cz = size of child sub-grid in each dimension within parent cells

region args = Ilevel reg-ID Cx Cy Cz
 Ilevel = which level(s) to define, see syntax below
 reg-ID = ID of region which parent cells must be in to create child cells
 Cx Cy Cz = size of child sub-grid in each dimension within parent cells

inside args = any or all

•

Examples:

create_grid 10 10 10
create_grid 10 10 10 block * * *
create_grid 10 10 10 block 4 2 5
create_grid 10 10 10 levels 4 subset 2*4 * * * 2 2 3
create_grid 20 10 1 levels 2 subset 2 10*15 3*7 1 2 2 1
create_grid 20 10 1 levels 3 region 2 b2 2 2 1 region 3 b3 2 3 1 inside any
create_grid 20 10 1 levels 2 subset 2 10*15 3*7 1 2 2 1 region 3 b3 2 3 1
create_grid 8 8 10 levels 3 subset 2 5* * * 4 4 4 subset 3 1 2*3 3* 2 2 1

Description:

Overlay a grid over the simulation domain defined by the create_box command. The grid can also be defined by
the read_grid command.

The grid in SPARTA is hierarchical, as described in Section howto 4.8. The entire simulation box is a single
parent grid cell at level 0. It is subdivided into Nx by Ny by Nz cells at level 1. Each of those cells can be a child
cell (no further sub-division) or can be a parent cell which is further subdivided into Nx by Ny by Nz cells at level
2. This can recurse to as many levels as desired. Different cells can stop recursing at different levels. Each level
can define its own unique Nx, Ny, Nz values for subdivision. Note that a grid with a single level is simply a
uniform grid with Nx by Ny by Nz cells in each dimension.

Each child grid cell is owned by a unique processor. The details of how child cells are assigned to processors by
the various options of this command are described below. The cells assigned to each processor will either be
"clumped" or "dispersed".

219

https://sparta.github.io

The block and clump keywords produce clumped assignments of child cells to each processor. This means each
processor's cells will be geometrically compact. The random and stride keywords, produce dispersed assignments
of child cells to each processor.

IMPORTANT NOTE: See Section 6.8 of the manual for an explanation of clumped and dispersed grid cell
assignments and their relative performance trade-offs. The balance_grid command can be used after the grid is
created, to assign child cells to processors in different ways. The "fix balance" command can be used to re-assign
them in a load-balanced manner periodically during a running simulation.

A single-level grid is defined by specifying only the arguments Nx, Ny, Nz, with no additional levels keyword.
This will create a uniform Nx by Ny by Nz grid of child cells. For 2d simulations, Nz must equal 1.

One of the keywords block, clump, random, or strided can be used to determine which processors are assigned
which cells in the grid. The inside keyword is ignored for single-level grids. If no keyword is used, a setting of
block 0 0 0 is the default.

The block keyword maps the P processors to a Px by Py by Pz logical grid that overlays the actual Nx by Ny by Nz
grid. This effectively assigns a contiguous 3d sub-block of cells to each processor.

Any of the Px, Py, Pz parameters can be specified with an asterisk "*", in which case SPARTA will choose the
number of processors in that dimension. It will do this based on the size and shape of the global grid so as to
minimize the surface-to-volume ratio of each processor's sub-block of cells.

The product of Px, Py, Pz must equal P, the total # of processors SPARTA is running on. For a 2d simulation, Pz
must equal 1. If multiple partitions are being used then P is the number of processors in this partition; see Section
2.6 for an explanation of the -partition command-line switch.

Note that if you run on a large, prime number of processors P, then a grid such as 1 x P x 1 will be required,
which may incur extra communication costs.

The random keyword means that each grid cell will be assigned randomly to one of the processors. Note that in
this case different processors will typically not be assigned exactly the same number of cells.

The clump keyword means that the Pth clump of cells is assigned to the same processor, where P is the number of
processors. E.g. if there are N = 100 cells and 10 processors, then the 1st processor (proc 0) will be assigned cells
1 to 10. The 2nd processor (proc 1) will be assigned cells 11 to 20. And The 10th processor (proc 9) will be
assigned cells 91 to 100.

The stride keyword means that every Pth cell is assigned to the same processor, where P is the number of
processors. E.g. if there are 100 cells and 10 processors, then the 1st processor (proc 0) will be assigned cells
1,11,21, ..., 91. The 2nd processor (proc 1) will be assigned cells 2,12,22 ..., 92. The 10th processor (proc 9) will
be assigned cells 10,20,30, ..., 100.

The argument for stride and clump determines how the N grid cells are ordered and is some permutation of the
letters x, y, and z. Each of the N cells has 3 indices (I,J,K) to describe its location in the 3d grid. If the stride
argument is yxz, then the cells will be ordered from 1 to N with the y dimension (J index) varying fastest, the x
dimension next (I index), and the z dimension slowest (K index).

A hierarchical grid with more than one level can be defined using the levels keyword. The Nlevels argument is the
number of levels which must be 2 or more. The entire simulation box is level 0 in the hierarchy. The settings for
Nx,Ny,Nz specify the level 1 grid. All other levels must be defined by using either the subset or region keyword
in addition to the levels keyword.

220

A block, clump, random, or stride keyword can be specified in addition to the levels keyword for a hierarchical
grid. As described above, they determine how level 1 grid cells are assigned to processors, as described above. In
the hierarchical case all grid cells of level 2 or higher that are within a single level 1 cells are assigned to the
processor that owns the level 1 cell.

The settings for every level, from 2 to Nlevels, must be specified exactly once via the Ilevel argument to either a
subset or region keyword. Ilevel can be specfied as a single number or use a wildcard asterisk in place of or in
conjuction with one or two integers to specify multiple levels at the same time. This takes the form â��*â�� or
â��*nâ�� or â��n*â�� or â��m*nâ��. An asterisk with no numeric values means all levels from 2 to Nlevels.
A leading asterisk means all levels from 2 to n (inclusive). A trailing asterisk means all levels from n to Nlevels
(inclusive). A middle asterisk means all levels from m to n (inclusive).

For the subset keyword, the Px, Py, Pz arguments specify which cells in the previous level are flagged as parents
and sub-divided to create cells at the new level. For example, if the level 1 grid is 100x100x100, then Px, Py, Pz
for level 2 could select any contiguous range of cells from 1 to 100 in x, y, or z. If the level 2 grid is 4x4x2 within
any level 1 cell (as set by Cx, Cy, Cz), then Px, Py, Pz for level 3 could select any contiguous range of cells from
1 to 4 in x, y and 1 to 2 in z. Each of the Px, Py, Pz arguments can be a single number or be specified with a
wildcard asterisk, the same as described above for Ilevel, where the bounds of Px (for example) are 1 to Cx in the
preceeding parent level.

The Cx, Cy, Cz arguments are the number of new cells (in each dimension) to partition each selected parent cell
into. Cz must be one for 2d. Any of Cx, Cy, Cz may have a value of 1, but they cannot all be 1. Note that for each
new level, only grid cells that exist in the previous level are partitioned further. E.g. level 3 cells are only added to
level 2 cells that exist, since some level 1 cells may not have been partitioned into level 2 cells.

For example this command creates a two-level grid:

create_grid 10 10 10 levels 2 subset 2 * * * 2 2 3

The 1st level is 10x10x10. Each of the 1000 level 1 cells is further partitioned into 2x2x3 cells. This means the
total number of resulting grid cells is 1000 * 12 = 12000.

This command creates a 3-level grid:

create_grid 8 8 10 levels 3 subset 2 5* * * 4 4 4 subset 3 1 2*3 3* 2 2 1

The first level is 8x8x10. The second level is 4x4x4 within each level 1 cell, but only half or 320 of the 640 level
1 cells are sub-divided, namely those with x indices from 5 to 8. Those with x indices from 1 to 4 remain as level
1 cells. Some of the level 2 cells are further partitioned into 2x2x1 level 3 cells. For the 4x4x4 level 2 grid within
320 or the level 1 cells, only the level 2 cells with x index = 1, y index = 2-3, and z-index = 3-4 are further
partitioned into level 3 cells, which is just 4 of the 64 level 2 cells. The resulting grid thus has 24640 grid cells:
320 level 1 cells, 19200 level 2 cells, and 5120 level 3 cells.

For the region keyword, the subset of cells in the previous level which are flagged as parents and sub-divided is
determined by which of them are in the geometric region specified by reg-ID.

The region command can define volumes for simple geometric objects such as a sphere or rectangular block. It
can also define unions or intersections of simple objects or other union or intersection objects. by defining an
appropriate region, a complex portion of the simulation domain can be refined to a new level.

Each grid cell at the previous level is tested to see whether it is "in" the region. The inside keyword determines
how this is done. If inside is set to any, which is the default, then a grid cell is in the region if any of its corner
points (4 in 2d, 8 in 3d) is in the region. If inside is set to all, then all 4 or 8 of its corner points must be in the

221

region for a grid cell to be in the region. Note that the side option for the region command can be used to define
whether the inside or outside of the geometric region is considered to be "in" the region.

If the grid cell is in the region, then it is refined using the Cx, Cy, Cz arguments in the same way the subset
keyword uses them. Examples using the region keyword are given above.

Restrictions:

This command can only be used after the simulation box is defined by the create_box command.

Related commands:

create_box, read_grid

Default:

The default setting for block vs clump vs random vs stride is block with Px = Py = Pz = *. The inside keyword
has a default setting of any.

222

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

create_isurf command

Syntax:

create_isurf group-ID ablateID thresh mode ...

group-ID = grid ID for which grid cells to perform calculation on•
ablateID = ID of a fix ablate command•
thresh = threshold for corner values used to generate implicit surfaces, value > 0.0 and < 255.0•
mode = inout or ave or multi

inout = mark corner points as either inside or outside surf
voxel = assign corner point values based on local solid fraction
ave = smooth values by averaging expected corner point values based on intersections between the explicit surfaces and cell edges
multi = mark corners using multiple values (i.e. multivalues)

•

Examples:

create_isurf all fablate 40.0 inout
create_isurf subset fablate 100.0 ave

Description:

This command converts all currently defined explicit surface elements to implicit surface elements. One
motivation for this operation is that implicit surfaces can be ablated over time via the fix ablate command. See the
How to 6.13 section of the manual for an explantion of explicit versus implicit surfaces.

Explicit surface elements are triangles in 3d or line segments in 2d. They are enumerated in a file, read by the
read_surf command. Implicit surface elements are also triangles or line segments. However each element is
contained within a single grid cell.

A related command which defines implicit surfaces is the read_isurf command which reads a file of corner point
values defined on a 2d or 3d grid, which is mapped to (a portion of) the SPARTA grid. It then calculates
appropriate implicit line segments or triangles within each grid cell based on its 4 or 8 corner points. See the
read_isurf command for details.

This command derives the 2d or 3d grid of corner point values from the set of explicit surface elements, rather
then reading them from a file (Hong24). It then proceeds similarly to the read_isurf command where implicit line
segments or triangles within each grid cell are calculated from the 4 or 8 corner points of the cell. When the
process is complete, all explicit surfaces are removed from the simulation. This is because SPARTA does not
currently allow both implicit and explicit surfaces to simulataneously exist. The read_isurf doc page has
additional information about using implicit surfaces in a simulation, which also apply to this command.

IMPORTANT NOTE: As for the read_isurf command, all implicit triangles (line segments in 2d) created within
the same grid cell are assigned the same surface ID, which is the grid cell ID.

Here are 3 pairs of images for a 2D circle, a 3D idealized bumpy surface, and a 3D cone. For each pair, the image
on the left is the explicit surface composed of line segments or triangles. The image on the right is the
corresponding implicit surfaces created by this command. Click on each image for a larger version:

223

https://sparta.github.io

The specified group-ID must be the name of a grid cell group, as defined by the group grid command, which
contains a set of grid cells, all of which are the same size and comprise a contiguous 3d array with extent Nx by
Ny by Nz. For 2d simulations, Nz must be specified as 1, and the group must comprise a 2d array of cells that is
Nx by Ny. These are the grid cells within which implicit surfaces will be created. It is important that the specified
group of grid cells wholly contain the explicit surfaces as explained in the next paragraph.

IMPORTANT NOTE: The aggregate set of implicit surfaces created by this command must represent a watertight
object(s), the same as explained for the read_surf command, otherwise SPARTA will generate an error. The
marching cube and square algorithms guarantee this (see the read_isurf doc page for details). However, if the Nx
by Ny by Nz array of grid cells is interior to the simulation box, the entire outer boundary of the grid cell array
should not be intersected by an explicit surface element. Otherwise a non-watertight surface will typically result.
If the array of grid cells touches a simulation box face, then this is not a requirement (the same as if a set of
explicit surfs were clipped at the box boundary). However, if a boundary is periodic in a particular dimension and
the array of grid cells touches that boundary, then you must insure the Nx by Ny by Nz grid of cells spans that
entire dimension. And if any explicit surfaces intersect that boundary, both periodic boundaries must be
intersected in the identical manner. E.g. if the y dimension is periodic, the any intersection by one or more explicit
surfaces of the ylo boundary must also occur at the yhi boundary, with identical x and z coordinates for each
intersection. Otherwise the aggregate set of induced implicit surfaces will not be consistent across the y periodic
boundary.

The specified ablateID is the fix ID of a fix ablate command which has been previously specified in the input
script. It will store the grid corner point values for each grid cell. It also has the code logic for converting grid

224

corner point values to surface elements (line segments or triangles) and also optionally allows for the surface to be
ablated during a simulation due to particles colliding with the surface elements.

As with the "read_isurf" command, the algorithm to create the implicit surfaces requires a threshold value as
input, which is the thresh value. For corner point values that bracket the threshold, it determines precisely where
in the grid cell the vertices of the inferred implicit surface elements will be.

The threshold must be specified as a floating point value such that 0 < thresh < 255.

The specified mode can be either inout or ave. The inout mode sets corner point values to zero if they are outside
the volume or area enclosed by the explicit surfaces. Conversely it sets corner point values to 255 if they are
inside the volume or area. If the explicit surface exactly intersects a grid cell corner, the corner point is treated as
outside (value = zero).

The voxel mode sets corner point values based on the local solid fraction. The solid fraction is defined as the
proportion of the grid cell volume which is solid and is a value between 0 and 1. For a given corner point, the
local solid fraction is the average solid volume of the cells adjoined by that corner point. Currently, the surface
conversion, regardless of the option, assumes all grid cells are identical in size and shape. Thus, the average is
taken as the sum of the solid fractions in each of the N surrounding cells divided by N. (The specific value of N is
explained in the next paragraph.) The solid fraction is computed from the solid volume which is determined by
the gas volume which is a per-grid cell quantity computed by SPARTA. That is, (solid volume) = (grid cell
volume) - (gas volume) and (solid fraction) = (solid volume) / (grid cell volume)

Interior corner points (corner points not located on the domain boundaries) average over four cells in 2D and eight
cells in 3D (N = 4 in 2D and N = 8 in 3D). If a corner point is on the domain boundary but not at one of the
corners of the domain, the solid fraction is determined from two cells in 2D and four cells in 3D. Corner points
located at the corners of the domain do not compute an average but use the solid fraction of the corresponding
corner grid cell. With the solid fraction, the corner point is calculated as (corner point value) = (solid fraction) *
255.

The ave mode is meant to generate implicit surfaces which more precisely represent the explicit surfaces. As with
inout mode, corner point values outside (or on) the surface are set to zero. For corner points which are inside the
surface, each grid cell edge which connects the corner point to an outside corner point is treated as a line segment.
In 2D, there are at most 4 such edges per corner point; in 3D, there are at most 6. Each cell edge is checked to see
if it intersects an explicit surface element and at what position along the segment. If more than one surface
element intersects the cell edge, only the intersection point closest to the inside corner point is considered. Using
the intersection point and the specified thresh parameter, a value is assigned to the inside corner point which will
induce an implicit surface element which passes through the intersection point. When multiple cell edges for the
same inside corner point are intersected by explicit surface elements, the value assigned to the inside corner point
is the average of the values computed for the individual cell edges.

225

The multi mode utilizes multivalues. Each corner stores 4 values in 2D and 6 values in 3D. For each cell edge,
there are two multivalues located at two different corner values which determine the location of the vertex. For
example, the location of the purple 'x' mark is determined by the third multivalue value in the top left corner and
the fourth multivalue value in the bottom left corner. multi does not require averaging since all corner point values
computed for each vertex can be stored. In general, multivalues distorts the surface less during the surface
conversion.

NOTE: Regardless of which mode is used, implicit surfaces are an approximation to the original explicit surfaces.
In particular:

The set of implicit surfaces cannot fully resolve features smaller than the size of the uniform grid cells
used to overlay the triangulated object. Furthermore, neither the inout and ave mode produce implicit
surface elements which conserve the normals of nearby explicit surface elements, so an exact match is
often not possible. In general, defining a finer grid (shrinking the grid cell size) will give a better match of
implicit surfaces to the original explicit surface elements.

•

If two adjoining explicit surfaces have different normal vectors, then there is effectively a discontinuous
"kink" in the surface. If the kink occurs inside a grid cell, the implicit surface elements cannot reproduce
it. This is because the 4 or 8 corner point values of a grid cell (and the thresh parameter) fully determine
the implicit surfaces generated within that cell, and they are derived from the intersection of explicit
surfaces with the faces of the grid cell.

•

The implicit surfaces created can be sensitive to the positioning of grid cell edges with respect to the
explicit surfaces. Thus incrementing or decrementing Nx or Ny or Nz can change the resulting implicit
surfaces in a non-continuous manner.

•

Examples of the effects of last two bullet points are illustrated in the following diagrams for 2d geomtries (similar
effects occur in 3d).

226

In the images above, the explicit surface is represented by solid red lines whereas the generated implicit surface is
dotted blue lines. The solid black lines are the outlines of grid cells. The leftmost diagram illustrates the 1st bullet
point. The blue line cannot match the slope of the red line because the lower-right corner point is assigned a value
which is the average of the two values which would be needed to match both intersection points of the red line
with the grid cell edges. The next 2 diagrams with a single grid cell illustrate the 2nd bullet point above. The 2
diagrams with two grid cells illustrate the 3rd bullet point above. The pointy red object is truncated so there are no
implicit surfaces in the top cell when the red apex is near the left-to-right middle of the grid cells. But there is
almost no truncation (implicit surfs in both cells) when the apex is close to the vertical grid line.

Restrictions:

Explicit and implicit surfaces cannot be mixed in the same simulation. Thus, all explicit surfaces from all surface
groups are converted into implicit surfaces, and no additional explicit surfaces can be added after this command is
used.

This command can only be used after the simulation box is defined by the create_box command, and after a grid
has been created by the create_grid command. Additionally, explicit surfaces must already be defined by the
read_surf command. Simulations with implicit surfaces cannot perform grid adaptation.

The global surfs explicit/distributed command must be used before using the read_surf command which defined
the explicit surfaces. This is because implicit surfaces are always distributed.

If particles already exist in the simulation along with the explicit surfaces, they will generally end up outside the
implicit surfaces (in the flow volume) as well. In some cases, the generated implicit surfaces will reduce the flow
volume slightly (for a particular grid cell). If this occurs any particles which were previously outside the explicit
surfaces but are now inside the implicit surfaces are immediately deleted by this command.

Related commands:

read_surf, fix_ablate, write_isurf

Default:

none

(Hong24) A. Y. K. Hong, M. A. Gallis, S. G Moore, and S. J. Plimpton, "Towards physically realistic ablation
modeling in direct simulation Monte Carlo," Physics of Fluids (2024).

227

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

create_particles command

create_particles/kk command

Syntax:

create_particles mix-ID style args keyword value ...

mix-ID = ID of mixture to use when creating particles•
style = n or single

n args = Np
 Np = 0 or number of particles to create

single args = species-ID x y z vx vy vz
 species-ID = ID of species of single particle
 x,y,z = position of particle (distance units)
 vx,vy,vz = velocity of particle (velocity units)

•

zero or more keyword/value pairs may be appended•
keyword = cut or global or region or species or density or temperature or velocity or twopass

cut value = yes or no
global value = yes or no
region value = region-ID
species values = svar xvar yvar zvar

 svar = name of equal-style variable for species
 xvar,yvar,zvar = names of internal-style variables for x,y,z

density values = dvar xvar yvar zvar
 svar = name of equal-style variable for density
 xvar,yvar,zvar = names of internal-style variables for x,y,z

temperature values = tvar xvar yvar zvar
 svar = name of equal-style variable for temperature
 xvar,yvar,zvar = names of internal-style variables for x,y,z

velocity values = vxvar vyvar vzvar xvar yvar zvar
 vxvar,vyvar,vzvar = names of equal-style variables for vx,vy,vz
 xvar,yvar,zvar = names of internal-style variables for x,y,z

twopass values = none

•

Examples:

create_particles background n 0
create_particles air n 100000 region sphere
create_particles air n 100000 global yes
create_particles air single 3 5.0 6.0 5.4 10.0 -1.0 0.0
create_particles air n 0 species mySpecies xpos NULL zpos
create_particles air n 0 density myDens xgrid ygrid NULL
create_particles air n 0 temperature myTemp xgrid ygrid zgrid
create_particles air n 0 velocity myVx NULL myVz xpos ypos NULL twopass

Description:

Create particles and add them to the simulation domain. The attributes of individual particles, such as species and
velocity, are determined by the mixture attributes, as specied by the mix-ID. In particular the temp, trot, tvib, and
vstream attributes of the mixture affect create particle velocities and internal energy modes. See the mixture
command for more details. Note that this command can be used multiple times to add more and more particles.

228

https://sparta.github.io

IMPORTANT NOTE: When a particle is created at a specified temperature (as set by the mixture command), it's
rotational and vibrational energy will also be initialized, consistent with the mixture temperatures. The rotate and
vibrate options of the collide_modify command determine how internal energy modes are initialized. If the
collide command has not yet been specified, then no rotational or vibrational energy will be assigned to created
particles. Thus if you wish to create particles with non-zero internal energy, the collide and (optionally)
collide_modify commands must be used before this command.

If the n style is used with Np = 0, then the number of created particles is calculated by SPARTA as a function of
the global fnum value, the mixture number density, and the flow volume of the simulation domain.

The fnum value is set by the global fnum command. The mixture nrho is set by the mixture command. The flow
volume of the simulation is the total volume of the simulation domain as specified by the create_box command,
minus any volume that is interior to surfaces defined by the read_surf command. Note that the flow volume
includes volume contributions from grid cells cut by surfaces. However particles are only created in grid cells
entirely external to surfaces. This means that particles may be created in external cells at a (slightly) higher
density to compensate for no particles being created in cut cells that still contribute to the overall flow volume.

If the n style is used with a non-zero Np, then exactly Np particles are created, which can be useful for debugging
or benchmarking purposes.

Based on the value of Np, each grid cell will have a target number of particles M to insert, which is a function of
the cell's flow volume as compared to the total system flow volume. If M has a fractional value, e.g. 12.5, then 12
particles will be inserted, and a 13th depending on the outcome of a random number generation. As grid cells are
looped over, the remainder fraction is accumulated, so that exactly Np particles are created across all the
processors.

IMPORTANT NOTE: The preceeding calculation is actually done using weighted cell volumes. Grid cells can be
weighted using the global weight command.

Each particle is inserted at a random location within the grid cell. The particle species is chosen randomly in
accord with the frac settings of the collection of species in the mixture, as set by the mixture command. The
velocity of the particle is set to the sum of the streaming velocity of the mixture and a thermal velocity sampled
from the thermal temperature of the mixture. Both the streaming velocity and thermal temperature are also set by
the mixture command. The internal rotational and vibrational energies of the particle are also set based on the trot
and tvib settings for the mixture, as explained above.

The single style creates a single particle. This can be useful for debugging purposes, e.g. to advect a single
particle towards a surface. A single particle of the specified species is inserted at the specified position and with
the specified velocity. In this case the mix-ID is ignored.

This is the meaning of the other allowed keywords.

The cut keyword controls how grid cells cut by surfaces are treated. If yes is specified (the default) then particles
are added to the flow portion of those cells (outside the surfaces). If no is specified, then particles are only created
in grid cells which are entirely external to surfaces, not in grid cells cut by surfaces.

The global keyword only applies when the n style is used, and controls how particles are generated in parallel.

If the value is yes, then every processor loops over all Np particles. As the coordinates of each is generated, each
processor checks what grid cell it is in, and only stores the particle if it owns that grid cell. Thus an identical set of
particles are created, no matter how many processors are running the simulation

229

IMPORTANT NOTE: The global yes option is not yet implemented.

If the value is no, then each of the P processors generates a N/P subset of particles, using its own random number
generation. It only adds particles to grid cells that it owns, as described above. This is a faster way to generate a
large number of particles, but means that the individual attributes of particles will depend on the number of
processors and the mapping of grid cells to procesors. The overall set of created particles should have the same
statistical properties as with the yes setting.

If the region keyword is used, then a particle will only added if its position is within the specified region-ID. This
can be used to only allow particle insertion within a subset of the simulation domain. Note that the side option for
the region command can be used to define whether the inside or outside of the geometric region is considered to
be "in" the region.

IMPORTANT NOTE: If the region and n keywords are used together, less than N particles may be added. This is
because grid cells will be candidates for particle insertion, unless they are entirely outside the bounding box that
encloses the region. Particles those grid cells attempt to add are included in the count for N, even if some or all of
the particle insertions are rejected due to not being inside the region.

The species keyword can be used to create particles with a spatially-dependent separation of species. The
specified svar is the name of an equal-style variable whose formula should evaluate to a species number, i.e. an
integer from 1 to Nsp, where Nsp is the number of species in the mixture with mix-ID. Since equal-style variables
evaluate to floating-point values, this value is truncated to an integer value. The formula for the species variable
can use one or two or three variables which will store the x, y, or z coordinates of the particle that is being
created. If used, these variables must be internal-style variables defined in the input script; their initial numeric
values can be anything. They must be internal-style variables, because this command resets their values directly.
Their names are specified as xvar, yvar, and zvar. If any of them is not used in the svar formula, it can be
specified as NULL.

When a particle is added, its coordinates are stored in the xvar, yvar, zvar variables if they are specified. The svar
variable is then evaluated. The returned value is used to set the species of that particle, based on the list of species
defined for the mixture. If the returned value is <= 0 or greater than Nsp = the number of species in the mixture,
then no particle is created.

As an example, these commands can be used in a 2d simulation, to create a particle distribution with species 1 on
top of species 2 with a sinudoidal interface between the two species, as illustrated in the snapshot of the initial
particle distribution. Click on the image for a larger version. Note that when using this option less than the
requested N particles can be created if the species variable returns values <= 0 or greater than Nsp = the number
of species in the mixture.

variable x internal 0
variable y internal 0
variable n equal 3
variable s equal "(v_y <0.5*(ylo+yhi) + 0.15*yhi*sin(2*PI*v_n*v_x/xhi)) + 1"
create_particles species n 10000 species s x y NULL

230

The density keyword can be used to create particles with a spatially-dependent density variation. The specified
dvar is the name of an equal-style variable whose formula should evaluate to a positive value. The formula for
dvar can use one or two or three variables which will store the x, y, or z coordinates of the geometric center point
of a grid cell. If used, these other variables must be internal-style variables defined in the input script; their initial
numeric values can by anything. Their names are specified as xvar, yvar, and zvar. If any of them is not used in
the dvar formula, it can be specified as NULL.

When particles are added to a grid cell, its center point coordinates are stored in xvar, yvar, zvar if they are
defined. The dvar variable is then evaluated. The returned value is used as a scale factor on the number of
particles to create in that grid cell. Thus a value of 0.5 would create half as many particles in that grid cell as
would otherwise be the case, due to the global fnum and mixture nrho settings that define the density, as explained
above. A value of 1.2 would create 20% more particles in that grid cell.

As an example, these commands can be used in a 2d simulation, to create more particles towards the upper right
corner of the domain and less towards the lower left corner, as illustrated in the snapshot of the initial particle
distribution. Click on the image for a larger version. Note that less than requested N particles will be created in
this case because all the scale factors generated by the variable d are less than 1.0.

variable x internal 0
variable y internal 0
variable d equal "v_x/xhi * v_y/yhi"
create_particles air n 10000 density d x y NULL

The temperature keyword can be used to create particles with a spatially-dependent thermal temperature
variation. The specified tvar is the name of an equal-style variable whose formula should evaluate to a positive
value. The formula for the tvar variable can use one or two or three variables which will store the x, y, or z
coordinates of the geometric center point of a grid cell. If used, these other variables must be internal-style
variables defined in the input script; their initial numeric values can by anything. Their names are specified as
xvar, yvar, and zvar. If any of them is not used in the tvar formula, it can be specified as NULL.

When particles are added to a grid cell, its center point coordinates are stored in xvar, yvar, zvar if they are
defined. The tvar variable is then evaluated. The returned value is used as a scale factor on the thermal
temperature number for particles created in that grid cell. Thus a value of 0.5 would create particles with a
thermal temperature half of what would otherwise be the case, due to the mixture temp setting which defines the
thermal temperature, as explained above. A value of 1.2 would create particles with a 20% higher thermal
temperature.

As an example, these commands can be used in a 2d simulation, to create a thermal temperature gradient in x,
where the temperature on the left side of the box is the default value, and the temperature on the right side is 3x
larger.

variable x internal 0
variable t equal "1.0 + 2.0*(v_x-xlo)/(xhi-xlo)"
create_particles air n 10000 temperature t x NULL NULL

231

The velocity keyword can be used to create particles with a spatially-dependent streaming velocity. The specified
vxvar, vyvar, vzvar are the names of equal-style variables whose formulas should evaluate to the corresponding
component of the streaming velocity. If any of them are specified as NULL, then that streaming velocity
component is set by the corresponding global or mixture streaming velocity component, the same as if the velocity
keyword were not used.

The formulas for the vxvar, vyvar, vzvar variables can use one or two or three variables which will store the x, y,
or z coordinates of the particle that is being created. If used, these other variables must be internal-style variables
defined in the input script; their initial numerica values can by anything. Their names are specified as xvar, yvar,
and zvar. If any of them is not used in the vxvar, vyvar, vzvar formulas, it can be specified as NULL.

When a particle is added, its coordinates are stored in xvar, yvar, zvar if they are defined. The vxvar, vyvar, vzvar
variables are then evaluated. The returned values are used to set the streaming velocity of that particle. A thermal
velocity is also added to the particle, using the the global or mixture temperature, as described above.

As an example, these commands can be used in a 2d simulation, to give particles an initial velocity pointing
towards the upper right corner of the domain with a magnitude that makes them all reach that point at the same
time (assuming their thermal velocity is small and it is not a collisional flow). Click on the image to play an
animation of the effect.

variable x internal 0
variable y internal 0
variable vx equal (xhi-v_x)/(1000*7.0e-9) # timesteps and timestep-size
variable vy equal (yhi-v_y)/(1000*7.0e-9)
create_particles air n 10000 velocity vx vy NULL x y NULL

The twopass keyword does not require a value. If used, the creation procedure will loop over the creation grid
cells twice, the same as the KOKKOS package version of this command does, so that it can reallocate memory
efficiently, e.g. on a GPU. If this keyword is used the non-KOKKOS and KOKKOS version will generate exactly
the same set of particles, which makes debugging easier. If the keyword is not used, the non-KOKKOS and
KOKKOS runs will use random numbers differently and thus generate different particles, though they will be
statistically similar.

This command (or more generically styles) can take a suffix as shown at the top of this page.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

232

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions: none

Related commands:

mixture, fix emit/face

Default:

The option defaults are cut = yes and global = no.

233

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

custom command

Syntax:

custom style attribute action args ... keyword value ...

style = particle or grid or surf•
attribute = name of custom attribute

 name = custom vector attribute with name
 name[N] = Nth column of custom array attribute with name

•

action = set or remove

set args = v_name subset-ID region-ID
 v_name = equal-, particle-, grid-, or surf-style variable with name
 subset-ID = mixture ID (particles) or group ID (grid cells or surf elements)
 region-ID = only apply to particle/grid/surf in region, NULL to not test

remove args = none

•

zero of more keyword/arg pairs may be appended (only for action = set)

keyword = type or size
type arg = int or float
size arg = M for number of columns in a new custom array

•

Examples:

variable ivec particle id/100000
variable sdvec surf c_1*10+3.5
variable sdarray1 surf s_dvec+1
variable sdarray2 surf v_sdarray1+1

custom particle ivec set v_ivec air NULL type int
custom surf dvec set v_sdvec all NULL
custom surf darray[1] set v_sdarray1 all NULL size 2
custom surf darray[2] set v_sdarray2 all NULL
custom particle ivec remove
custom surf darray remove

Description:

Create or reset or remove a custom attribute for individual particles, grid cells, or surface elements. To create or
reset an attribute a variable is specified and evaluated. Custom attributes can be can be vectors (single value per
entity) or arrays (mutiple values per entity). They can also be integer or floating point values. See Section 6.17 for
more discussion of custom attributes.

The specified style setting is particle or grid or surf for per-particle, per-grid, or per-surf attributes.

The attribute specifies the name of the attribute to operate on. The same name can be used for attributes of
different styles. E.g. there can be a custom attribute with the name "flag" for both particles and surface elements.
If the attribute name is specified without brackets, it refers to a custom vector (single value per entity). If the
attribute name is specified with a bracketed integer, it refers to the column of a custom array (one or more values
per entity). The integer N must be between 1 and M = # of columns in the array (values per entity). See the size
keyword discussion below for how to specify M if it is a new custom array.

234

https://sparta.github.io

The action is specified as set or remove.

If remove is used, then the attribute should be simply the name of the attribute, whether it is a vector or array. No
trailing brackets are specified. The attribute will be removed from the system. No further arguments can be
specified.

If set is used, then the attribute is created if it does not already exist and its values are initialized. If it already
exists, its values are reset. Custom attributes can be vectors (single value per entity) or arrays (mutiple values per
entity). To set the values for a custom vector, use an attribute name without brackets, e.g. temperature. To set the
values for a single column of a custom array, use an attribute name suffixed by a bracketed integer, e.g. dipole[3].
The integer must be a value from 1 to M, where M is the number of columns (values per entity) in the array.

The specified v_name is the name of a previously defined variable which this command will evaluate. It must be
either an equal-style or particle-style or grid-style or surf-style variable. All of these styles define a mathematical
formula which is used to compute the value(s) of the variable. See the variable for details.

If an equal-style variable is specified, it produces a single value which will be assigned as the custom value to all
particles or grid cells or surface elements. Otherwise a particle-style variable must be used for style = particle, a
grid-style variable for style = grid, or a surf-style variable for style = surf. When it is evaluated it generates one
value for each particle, grid cell, or surface element, which is assigned to the custom vector or to a column of the
custom array.

Note that the latter 3 variable styles can include outputs from compute or fix commands. They can also include
the current timestep or the spatial position of a particle, grid cell, or surface element in their formula. So it is easy
to calculate values for each entity which vary spatially or which depend on the current timestep.

The next two arguments, subset-ID and region-ID, can limit which particles, grid cells, or surface elements are
assigned a custom value. An individual particle, grid cell, or surface element must meet both criteria to have its
custom value set, otherwise its value is set to zero.

The subset-ID is the ID of a mixture for particles or the ID of a group of grid cells or surface elements. Only
particles in the mixture or grid cells/surface elements in the group will be assigned a value. See the mixture and
group commands for more details. Note that "all" is a pre-defined mixture ID which contains all particles.
Likewise "all" is the name of a pre-defined group with all grid cells or surface elements.

The region-ID is the ID of a geometric region defined by the region command. Only particles or grid cells or
surface elements in the region will have their values set. The center point of a grid cell or surface element is used
for the region check. If region-ID is specified as NULL, then the region criterion is not applied.

Two optional keywords affect the creation of a new custom vector or array. They are ignored if the custom vector
or array already exists.

The type keyword can be used with int or float as its arg. The created custom attribute will then store either
integer or floating-point values. Floating point values are the default.

The size keyword can be used with arg = 0 to create a custom vector (which is the default). It can also be used
with an arg M >= 1 to create an array with M columns (values per entity). This means that if a new attribute name
is specified with no brackets, the size keyword is not necessary, because it's default value refers to a custom
vector. But if a new attribute name with a bracket is used, the size keyword must be used so that the column
dimension of the array is known.

Restrictions: none

235

Related commands:

mixture, group, region

Default:

The default settings for creation of a new custom attibute are type = float and size = 0.

236

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

dimension command

Syntax:

dimension N

N = 2 or 3•

Examples:

dimension 2
dimension 3

Description:

Set the dimensionality of the simulation. By default SPARTA runs 3d simulations, but 2d simulations can also be
run.

2d axi-symmetric models can be run by setting the dimension to 2, and defining the lower boundary in the
y-dimension to axi-symmetric via the boundary command.

Restrictions:

This command must be used before the simulation box is defined by a create_box command.

Related commands: none

Default:

dimension 3

237

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

dump command

dump image command

Syntax:

dump ID style select-ID N file args

ID = user-assigned name for the dump•
style = particle or grid or surf or image•
select-ID = which particles, grid cells, surface elements to dump

 for dump style = particle or image, use a mixture ID
 for style = grid, use a grid group ID
 for style = surf, use a surface group ID

•

N = dump every this many timesteps•
file = name of file to write dump info to•
args = list of arguments for a particular style

particle args = list of particle attributes
 possible attributes = id, type, proc, cellID, x, y, z, xs, ys, zs, vx, vy, vz,
 ke, erot, evib,
 c_ID, c_ID[N], f_ID, f_ID[N], v_name, p_name, p_name[N]

 id = particle ID
 type = particle species as an integer index
 proc = ID of owning processor
 cellID = ID of grid cell particle is in
 x,y,z = unscaled particle coordinates
 xs,ys,zs = scaled particle coordinates
 vx,vy,vz = particle velocities
 ke,erot,evib = translational, rotational, and vibrational energy
 c_ID = per-particle vector calculated by a compute with ID
 c_ID[N] = Nth column of per-particle array calculated by a compute with ID, N can include wildcard (see below)
 f_ID = per-particle vector calculated by a fix with ID
 f_ID[N] = Nth column of per-particle array calculated by a fix with ID, N can include wildcard (see below)
 v_name = per-particle vector calculated by a particle-style variable with name
 p_name = custom per-particle vector with name
 p_name[N] = Nth column of custom per-particle array with name, N can include wildcard (see below)

grid args = list of grid attributes
 possible attributes = id, idstr, split, proc, xlo, ylo, zlo, xhi, yhi, zhi,
 c_ID, c_ID[N], f_ID, f_ID[N], v_name, g_name, g_name[N]

 id = integer form of grid cell ID
 idstr = string form of grid cell ID
 split = integer, either 0 (unsplit cell) or 1..N (split cell index + 1)
 proc = processor that owns grid cell
 xlo,ylo,zlo = coords of lower left corner of grid cell
 xhi,yhi,zhi = coords of lower left corner of grid cell
 xc,yc,zc = coords of center of grid cell
 vol = flow volume of grid cell (area in 2d)
 c_ID = per-grid vector calculated by a compute with ID
 c_ID[N] = Nth column of per-grid array calculated by a compute with ID, N can include wildcard (see below)
 f_ID = per-grid vector calculated by a fix with ID
 f_ID[N] = Nth column of per-grid array calculated by a fix with ID, N can include wildcard (see below)
 v_name = per-grid vector calculated by a grid-style variable with name

•

238

https://sparta.github.io

 g_name = custom per-grid vector with name
 g_name[N] = Nth column of custom per-grid array with name, N can include wildcard (see below)

surf args = list of surf attributes
 possible attributes = id, v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z, area,
 c_ID, c_ID[N], f_ID, f_ID[N], v_name, s_name, s_name[N]

 id = surface element ID
 v1x,v1y,v1z = coords of 1st vertex in surface element
 v2x,v2y,v2z = coords of 2nd vertex in surface element
 v3x,v3y,v3z = coords of 3rd vertex in surface element
 area = surface element area (3d, axisymmetric) or length (2d)
 c_ID = per-surf vector calculated by a compute with ID
 c_ID[N] = Nth column of per-surf array calculated by a compute with ID, N can include wildcard (see below)
 f_ID = per-surf vector calculated by a fix with ID
 f_ID[N] = Nth column of per-surf array calculated by a fix with ID, N can include wildcard (see below)
 v_name = per-surf vector calculated by a surf-style variable with name
 s_name = custom per-surf vector with name
 s_name[N] = Nth column of custom per-surf array with name, N can include wildcard (see below)

image args = discussed on dump image doc page

Examples:

dump 1 particle all 100 dump.myforce.* id type x y vx fx
dump 2 particle inflow 100 dump.%.myforce id type c_myF[3] v_ke
dump 3 grid all 1000 tmp.grid id proc xlo ylo zlo xhi yhi zhi

Description:

Dump a snapshot of simulation quantities to one or more files every N timesteps in one of several styles. The
image style is the exception; it creates a JPG or PPM image file of the simulation configuration every N
timesteps, as discussed on the dump image doc page.

The ID for a dump is used to identify the dump in other commands. Each dump ID must be unique. The ID can
only contain alphanumeric characters and underscores. You can specify multiple dumpes of the same style so long
as they have different IDs. A dump can be deleted with the undump command, after which its ID can be re-used.

The style setting determines what quantities are written to the file and in what format. The particle, grid, surf
options are for particles, grid cells, or surface elements. Settings made via the dump_modify command can also
alter what info is included in the file and the format of individual values.

The select-ID setting determines which particles, grid cells, or surface elements are output. For style = particle,
the select-ID is a mixture ID as defined by the mixture command. Only particles whose species are part of the
mixture are output. For style = grid, the select-ID is for a grid group, as defined by the group grid command. Only
grid cells in the group are output. For style = surf, the select-ID is for a surface eleemnt group, as defined by the
group surf command. Only surface elements in the group are output.

As described below, the filename determines the kind of output (text or binary or gzipped, one big file or one per
timestep, one big file or one per processor).

The precision of values output to text-based dump files can be controlled by the dump_modify format command
and its options.

The particle and grid and surf styles create files in a simple text format that is self-explanatory when viewing a
dump file. Many of the SPARTA post-processing tools, including Pizza.py, work with this format.

239

https://lammps.github.io/pizza

For post-processing purposes the text files are self-describing in the following sense.

The dimensions of the simulation box are included in each snapshot. This information is formatted as:

ITEM: BOX BOUNDS xx yy zz
xlo xhi
ylo yhi
zlo zhi

where xlo,xhi are the maximum extents of the simulation box in the x-dimension, and similarly for y and z. The
"xx yy zz" represent 6 characters that encode the style of boundary for each of the 6 simulation box boundaries
(xlo,xhi and ylo,yhi and zlo,zhi). Each of the 6 characters is either o = outflow, p = periodic, or s = specular. See
the boundary command for details.

The "ITEM: NUMBER OF ATOMS" or "ITEM: NUMBER OF CELLS" or "ITEM: NUMBER OF SURFS"
entry in each snapshot gives the number of particles, grid cells, surfaces to follow.

The "ITEM: ATOMS" or "ITEM: CELLS" or "ITEM: SURFS" entry in each snapshot lists column descriptors for
the per-particle or per-grid or per-surf lines that follow. The descriptors are the attributes specied in the dump
command for the style. Possible attributes are listed above and will appear in the order specified. An explanation
of the possible attributes is given below.

Dumps are performed on timesteps that are a multiple of N (including timestep 0). Note that this means a dump
will not be performed on the initial timestep after the dump command is invoked, if the current timestep is not a
multiple of N. This behavior can be changed via the dump_modify first command. N can be changed between
runs by using the dump_modify every command.

The specified filename determines how the dump file(s) is written. The default is to write one large text file,
which is opened when the dump command is invoked and closed when an undump command is used or when
SPARTA exits.

Dump filenames can contain two wildcard characters. If a "*" character appears in the filename, then one file per
snapshot is written and the "*" character is replaced with the timestep value. For example, tmp.dump.* becomes
tmp.dump.0, tmp.dump.10000, tmp.dump.20000, etc. Note that the dump_modify pad command can be used to
insure all timestep numbers are the same length (e.g. 00010), which can make it easier to read a series of dump
files in order by some post-processing tools.

If a "%" character appears in the filename, then one file is written for each processor and the "%" character is
replaced with the processor ID from 0 to P-1. For example, tmp.dump.% becomes tmp.dump.0, tmp.dump.1, ...
tmp.dump.P-1, etc. This creates smaller files and can be a fast mode of output on parallel machines that support
parallel I/O for output.

Note that the "*" and "%" characters can be used together to produce a large number of small dump files!

If the filename ends with ".bin", the dump file (or files, if "*" or "%" is also used) is written in binary format. A
binary dump file will be about the same size as a text version, but will typically write out much faster. Of course,
when post-processing, you will need to convert it back to text format (see the binary2txt tool) or write your own
code to read the binary file. The format of the binary file can be understood by looking at the tools/binary2txt.cpp
file.

If the filename ends with ".gz", the dump file (or files, if "*" or "%" is also used) is written in gzipped format. A
gzipped dump file will be about 3x smaller than the text version, but will also take longer to write.

240

Note that in the discussion which follows, for styles which can reference values from a compute or fix or custom
attribute, like the particle, grid, or surf styles, the bracketed index I can be specified using a wildcard asterisk with
the index to effectively specify multiple values. This takes the form "*" or "*n" or "n*" or "m*n". If N = the size
of the vector (for mode = scalar) or the number of columns in the array (for mode = vector), then an asterisk with
no numeric values means all indices from 1 to N. A leading asterisk means all indices from 1 to n (inclusive). A
trailing asterisk means all indices from n to N (inclusive). A middle asterisk means all indices from m to n
(inclusive).

Using a wildcard is the same as if the individual columns of the array had been listed one by one. E.g. these 2
dump commands are equivalent, since the compute grid command creates a per-grid array with 3 columns:

compute myGrid all all u v w
dump 2 grid all 100 tmp.dump id c_myGrid[*]
dump 2 grid all 100 tmp.dump id c_myGrid[1] c_myGrid[2] c_myGrid[3]

This section explains the particle attributes that can be specified as part of the particle style.

Id is the particle ID. Type is an integer index representing the particle species. It is a value from 1 to Nspecies.
The value corresponds to the order in which species were defined via the species command. Proc is the ID of the
processor which currently owns the particle.

The x, y, z attributes write particle coordinates "unscaled", in the appropriate distance units. Use xs, ys, zs to
"scale" the coordinates to the box size, so that each value is 0.0 to 1.0.

Vx, vy, vz are components of particle velocity. The ke, erot, and evib attributes are the kinetic, rotational, and
vibrational energies of the particle. A particle's kinetic energy is given by 1/2 m (vx^2 + vy^2 + vz^2). The way
that rotational and vibrational energy is treated in collisions and stored by particles is affected by the
collide_modify command.

The c_ID and c_ID[N] attributes allow per-particle vectors or arrays calculated by a compute to be output. The ID
in the attribute should be replaced by the actual ID of the compute that has been defined previously in the input
script. See the compute command for details.

If c_ID is used as a attribute, the compute must calculate a per-particle vector, and it is output. If c_ID[N] is used,
the compute must calculate a per-particle array, and N must be in the range from 1-M, which will output the Nth
column of the M-column array. See the discussion above for how N can be specified with a wildcard asterisk to
effectively specify multiple values.

The f_ID and f_ID[N] attributes allow vector or array per-particle quantities calculated by a fix to be output. The
ID in the attribute should be replaced by the actual ID of the fix that has been defined previously in the input
script.

If f_ID is used as a attribute, the fix must calculate a per-particle vector, and it is output. If f_ID[N] is used, the fix
must calculate a per-particle array, and N must be in the range from 1-M, which will output the Nth column of the
M-column array. See the discussion above for how N can be specified with a wildcard asterisk to effectively
specify multiple values.

The v_name attribute allows per-particle vectors calculated by a variable to be output. The name in the attribute
should be replaced by the actual name of the variable that has been defined previously in the input script. Only a
particle-style variable can be referenced, since it is the only style that generates per-particle values. Variables of
style particle can reference per-particle attributes, stats keywords, or invoke other computes, fixes, or variables
when they are evaluated, so this is a very general means of creating quantities to output to a dump file.

241

The p_name and p_name[N] attributes allow custom per-particle vectors or arrays defined by some other
command to be output. The name should be replaced by the name of the attribute. See Section 6.17 for more
discussion of custom attributes and command that define them. For example, the fix ambipolar command which
defines the per-particle custom vector "ionambi" and custom array "velambi".

If p_name is used as a attribute, the custom attribute must be a vector, and it is output. If p_name[N] is used, the
custom attribute must be an array, and N must be in the range from 1-M, which will output the Nth column of an
M-column array. See the discussion above for how N can be specified with a wildcard asterisk to effectively
specify multiple values.

See Section 10 of the manual for information on how to add new compute and fix styles to SPARTA to calculate
per-particle quantities which could then be output into dump files.

This section explains the grid cell attributes that can be specified as part of the grid style.

Note that dump grid will output one line (per snapshot) for 3 kinds of child cells: unsplit cells, cut cells, and sub
cells of split cells. Section 6.8 of the manual gives details of how SPARTA defines child, unsplit, cut, split, and
sub cells. This is different than compute or fix commands which produce per grid information; they also include
split cells in their output. The dump grid command discards the split cell information since the sub cells of a split
cell provide the needed information for further processing and visualization. Note that unsplit cells can be outside
(in the flow) or inside surface objects, if they exist.

Id and idstr are two different forms of the grid cell ID. In SPARTA each grid cell is assigned a unique ID which
represents its location, in a topological sense, within the hierarchical grid. This ID is stored as an integer such as
5774983, but can also be decoded into a string such as 33-4-6, which makes it easier to understand the grid
hierarchy. In this case it means the grid cell is at the 3rd level of the hierarchy. Its grandparent cell was 33 at the
1st level, its parent was cell 4 (at level 2) within cell 33, and the cell itself is cell 6 (at level 3) within cell 4 within
cell 33. If you specify id, the ID is printed directly as an integer. If you specify idstr, it is printed as a string.

Note that the id and idstr of two or more sub-cells are the same as the id and idstr of the split cell they are part of.
This means that if a simulation has split cells, the dump file will contain duplicate IDs in the same snapshot.

Proc is the ID of the processor which currently owns the grid cell.

The xlo, ylo, zlo attributes write the coordinates of the lower-left corner of the grid cell in the appropriate distance
units. The xhi, yhi, zhi attributes write the coordinates of the upper-right corner of the grid cell. The xc, yc, zc
attributes write the coordinates of the center point of the grid cell. The zlo, zhi, zc attributes cannot be used for a
2d simulation. As with id and idstr, as explained above, these attributes are the same for multiple sub-cells of a
single split cell they are part of.

The vol attribute is the flow volume of the grid cell (or area in 2d) for unsplit or cut or sub cells. Section 4.8 of the
manual gives details of how SPARTA defines unsplit and sub cells. Flow volume is the portion of the grid cell
that is accessible to particles, i.e. outside any closed surface that may intersect the cell. Note that unsplit cells
which are inside a surface object will have a flow volume of 0.0. Likewise a cut cell which is inside a suface
object but which is intersected by surface element(s) which only touch a face, edge, or corner point of the grid
cell, will have a flow volume of 0.0.

The c_ID and c_ID[N] attributes allow per-grid vectors or arrays calculated by a compute to be output. The ID in
the attribute should be replaced by the actual ID of the compute that has been defined previously in the input
script. See the compute command for details.

242

If c_ID is used as a attribute, and the compute calculates a per-grid vector, then the per-grid vector is output. If
c_ID[N] is used, then N must be in the range from 1-M, which will output the Nth column of the M-column
per-grid array calculated by the compute. See the discussion above for how N can be specified with a wildcard
asterisk to effectively specify multiple values.

The f_ID and f_ID[N] attributes allow per-grid vectors or arrays calculated by a fix to be output. The ID in the
attribute should be replaced by the actual ID of the fix that has been defined previously in the input script.

If f_ID is used as a attribute, and the fix calculates a per-grid vector, then the per-grid vector is output. If f_ID[N]
is used, then N must be in the range from 1-M, which will output the Nth column of the M-columne per-grid array
calculated by the fix. See the discussion above for how N can be specified with a wildcard asterisk to effectively
specify multiple values.

The v_name attribute allows per-grid vectors calculated by a variable to be output. The name in the attribute
should be replaced by the actual name of the variable that has been defined previously in the input script. Only a
grid-style variable can be referenced, since it is the only style that generates per-grid values. Variables of style
grid can reference per-grid attributes, stats keywords, or invoke other computes, fixes, or variables when they are
evaluated, so this is a very general means of creating quantities to output to a dump file.

The g_name and g_name[N] attributes allow custom per-grid cell vectors or arrays defined by some other
command to be output. The name should be replaced by the name of the attribute. See Section 6.17 for more
discussion of custom attributes and command that define them. For example, the read_grid and surf_react implicit
commands can define per-grid attributes. (The surf/react implicit command has not yet been released in public
SPARTA).

If g_name is used as a attribute, the custom attribute must be a vector, and it is output. If g_name[N] is used, the
custom attribute must be an array, and N must be in the range from 1-M, which will output the Nth column of an
M-column array. See the discussion above for how N can be specified with a wildcard asterisk to effectively
specify multiple values.

See Section 10 of the manual for information on how to add new compute and fix styles to SPARTA to calculate
per-grid quantities which could then be output into dump files.

This section explains the surface element attributes that can be specified as part of the surf style. For 2d
simulations, a surface element is a line segment with 2 end points. Crossing the unit +z vector into the vector
(v2-v1) determines the outward normal of the line segment. For 3d simulations, a surface element is a triangle
with 3 corner points. Crossing (v2-v1) into (v3-v1) determines the outward normal of the triangle.

Id is the surface element ID.

The v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z attributes write the coordinates of the vertices of the end or corner
points of the surface element. The v1z, v2z, v3x, v3y, and v3z attributes cannot be used for a 2d simulation.

The area attribute writes the surface element area (3d and axisymmetric) or length (2d).

The c_ID and c_ID[N] attributes allow per-surf vectors or arrays calculated by a compute to be output. The ID in
the attribute should be replaced by the actual ID of the compute that has been defined previously in the input
script. See the compute command for details.

If c_ID is used as a attribute, and the compute calculates a per-srf vector, then the per-surf vector is output. If
c_ID[N] is used, then N must be in the range from 1-M, which will output the Nth column of the M-column
per-surf array calculated by the compute. See the discussion above for how N can be specified with a wildcard

243

asterisk to effectively specify multiple values.

The f_ID and f_ID[N] attributes allow per-surf vectors or arrays calculated by a fix to be output. The ID in the
attribute should be replaced by the actual ID of the fix that has been defined previously in the input script.

If f_ID is used as a attribute, and the fix calculates a per-surf vector, then the per-surf vector is output. If f_ID[N]
is used, then N must be in the range from 1-M, which will output the Nth column of the M-column per-surf array
calculated by the fix. See the discussion above for how N can be specified with a wildcard asterisk to effectively
specify multiple values.

The v_name attribute allows per-surf vectors calculated by a variable to be output. The name in the attribute
should be replaced by the actual name of the variable that has been defined previously in the input script. Only a
surf-style variable can be referenced, since it is the only style that generates per-surf values. Variables of style
surf can reference per-surf attributes, stats keywords, or invoke other computes, fixes, or variables when they are
evaluated, so this is a very general means of creating quantities to output to a dump file.

The s_name and s_name[N] attributes allow custom per-surface element vectors or arrays defined by some other
command to be output. The name should be replaced by the name of the attribute. See Section 6.17 for more
discussion of custom attributes and command that define them. For example, the read_surf, fix surf/temp, and
surf_react adsorb commands can define per-surf attributes.

If s_name is used as a attribute, the custom attribute must be a vector, and it is output. If s_name[N] is used, the
custom attribute must be an array, and N must be in the range from 1-M, which will output the Nth column of an
M-column array. See the discussion above for how N can be specified with a wildcard asterisk to effectively
specify multiple values.

See Section 10 of the manual for information on how to add new compute and fix styles to SPARTA to calculate
per-surf quantities which could then be output into dump files.

Restrictions:

To write gzipped dump files, you must compile SPARTA with the -DSPARTA_GZIP option - see the Making
SPARTA section of the documentation.

Related commands:

dump image, dump_modify, undump

Default:

The defaults for the image style are listed on the dump image doc page.

244

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

dump image command

dump movie command

Syntax:

dump ID style mix-ID N file color diameter keyword value ...

ID = user-assigned name for the dump•
style = image or movie = style of dump command (other styles particle or grid or surf are discussed on
the dump doc page)

•

mix-ID = mixture ID for which particles to include in image•
N = dump every this many timesteps•
file = name of file to write image to•
color = particle attribute that determines color of each particle•
diameter = particle attribute that determines size of each particle•
zero or more keyword/value pairs may be appended•
keyword = particle or pdiam or grid or gridx or gridy or gridz or surf or size or view or center or up or
zoom or persp or box or gline or sline or axes or shiny or ssao

particle = yes/no = do or do not draw particles
pdiam value = number = numeric value for particle diameter (distance units)
grid values = color

 color = proc or per-grid compute or fix
gridx values = xcoord color

 xcoord = x value to draw yz plane of grid cells at
 color = proc or per-grid compute or fix

gridy values = ycoord color
 ycoord = y value to draw xz plane of grid cells at
 color = proc or per-grid compute or fix

gridz values = zcoord color
 zcoord = z value to draw xy plane of grid cells at
 color = proc or per-grid compute or fix

surf values = color diam
 color = one or proc or per-surf compute or fix
 diam = diameter of 2d lines as fraction of shortest box length

size values = width height = size of images
 width = width of image in # of pixels
 height = height of image in # of pixels

view values = theta phi = view of simulation box
 theta = view angle from +z axis (degrees)
 phi = azimuthal view angle (degrees)
 theta or phi can be a variable (see below)

center values = flag Cx Cy Cz = center point of image
 flag = "s" for static, "d" for dynamic
 Cx,Cy,Cz = center point of image as fraction of box dimension (0.5 = center of box)
 Cx,Cy,Cz can be variables (see below)

up values = Ux Uy Uz = direction that is "up" in image
 Ux,Uy,Uz = components of up vector
 Ux,Uy,Uz can be variables (see below)

zoom value = zfactor = size that simulation box appears in image
 zfactor = scale image size by factor > 1 to enlarge, factor <1 to shrink
 zfactor can be a variable (see below)

persp value = pfactor = amount of "perspective" in image
 pfactor = amount of perspective (0 = none, <1 = some, > 1 = highly skewed)
 pfactor can be a variable (see below)

box values = yes/no diam = draw outline of simulation box

•

245

https://sparta.github.io

 yes/no = do or do not draw simulation box lines
 diam = diameter of box lines as fraction of shortest box length

gline values = yes/no diam = draw outline of each grid cell
 yes/no = do or do not draw grid cell outlines
 diam = diameter of grid outlines as fraction of shortest box length

sline values = yes/no diam = draw outline of each surface element
 yes/no = do or do not draw surf element outlines
 diam = diameter of surf element outlines as fraction of shortest box length

axes values = yes/no length diam = draw xyz axes
 yes/no = do or do not draw xyz axes lines next to simulation box
 length = length of axes lines as fraction of respective box lengths
 diam = diameter of axes lines as fraction of shortest box length

shiny value = sfactor = shinyness of spheres and cylinders
 sfactor = shinyness of spheres and cylinders from 0.0 to 1.0

ssao value = yes/no seed dfactor = SSAO depth shading
 yes/no = turn depth shading on/off
 seed = random # seed (positive integer)
 dfactor = strength of shading from 0.0 to 1.0

Examples:

dump myDump image all 100 dump.*.jpg type type
dump myDump movie all 100 movie.mpg type type

These commands will dump shapshot images of all particles whose species are in the mix-ID to a file every 100
steps. The last two shell command will make a movie from the JPG files (once the run has finished) and play it in
the Firefox browser:

dump 4 image all 100 tmp.*.jpg type type pdiam 0.2 view 90 -90
dump_modify 4 pad 4
% convert tmp*jpg tmp.gif
% firefox tmp.gif

Description:

Dump a high-quality ray-traced image of the simulation every N timesteps and save the images either as a
sequence of JPEG or PNG or PPM files, or as a single movie file. The options for this command as well as the
dump_modify command control what is included in the image and how it appears.

Any or all of these entities can be included in the images:

particles (all in mixture or limited to a region)•
grid cells (all or limited to a region)•
x,y,z planes cutting through the grid•
surface elements•

Particles can be colored by any attribute allowed by the dump particle command. Grid cells and the x,y,z cutting
planes can be colored by any per-grid attribute calculated by a compute or fix. Surface elements can be colored by
any per-surf attribute calculated by a compute or fix.

A series of images can easily be converted into an animated movie of your simulation (see further details below),
or the process can be automated without writing the intermediate files using the dump movie command. Other
dump styles store snapshots of numerical data asociated with particles, grid cells, and surfaces in various formats,
as discussed on the dump doc page.

Here are two sample images, rendered as JPG files. Click to see the full-size images.

246

The left image is flow around a sphere with visualization of triangular surface elements on the sphere surface
(colored by surface presssure), a vertical plane of grid cells (colored by particle density), and a horizontal plane of
particles (colored by chemical species). The right image is the initial condition for a 2d simulation of
Rayleigh-Taylor mixing as a relatively dense heavy gas (red) mixes with a light gas (green), driven by gravity in
the downward direction.

The filename suffix determines whether a JPEG, PNG, or PPM file is created with the image dump style. If the
suffix is ".jpg" or ".jpeg", then a JPEG format file is created, if the suffix is ".png", then a PNG format is created,
else a PPM (aka NETPBM) format file is created. The JPEG and PNG files are binary; PPM has a text mode
header followed by binary data. JPEG images have lossy compression; PNG has lossless compression; and PPM
files are uncompressed but can be compressed with gzip, if SPARTA has been compiled with -DSPARTA_GZIP
and a ".gz" suffix is used.

Similarly, the format of the resulting movie is chosen with the movie dump style. This is handled by the
underlying FFmpeg converter program, which must be available on your machine, and thus details have to be
looked up in the FFmpeg documentation. Typical examples are: .avi, .mpg, .m4v, .mp4, .mkv, .flv, .mov, .gif
Additional settings of the movie compression like bitrate and framerate can be set using the dump_modify
command.

To write out JPEG and PNG format files, you must build SPARTA with support for the corresponding JPEG or
PNG library. To convert images into movies, SPARTA has to be compiled with the -DSPARTA_FFMPEG flag.
See Section 2.2 of the manual for instructions on how to do this.

Dumps are performed on timesteps that are a multiple of N, including timestep 0. Note that this means a dump
will not be performed on the initial timestep after the dump command is invoked, if the current timestep is not a
multiple of N. This behavior can be changed via the dump_modify first command. N can be changed between
runs by using the dump_modify every command.

Dump image filenames must contain a wildcard character "*", so that one image file per snapshot is written. The
"*" character is replaced with the timestep value. For example, tmp.dump.*.jpg becomes tmp.dump.0.jpg,
tmp.dump.10000.jpg, tmp.dump.20000.jpg, etc. Note that the dump_modify pad command can be used to insure
all timestep numbers are the same length (e.g. 00010), which can make it easier to convert a series of images into
a movie in the correct ordering.

Dump movie filenames on the other hand, must not have any wildcard character since only one file combining all
images into a single movie will be written by the movie encoder.

247

Several of the keywords determine what objects are rendered in the image, namely particles, grid cells, or surface
elements. There are additional optional kewords which control how the image is rendered. As listed below, all of
the keywords have defaults, most of which you will likely not need to change. The dump modify also has options
specific to the dump image style, particularly for assigning colors to particles and other image features.

Rendering of particles

Particles are drawn by default using the color and diameter settings. The particle keyword allow you to turn off
the drawing of all particles, if the specified value is no. Only particles in a geometric region can be drawn using
the dump_modify region command.

The color and diameter settings determine the color and size of particles rendered in the image. They can be any
particle attribute defined for the dump particle command, including type.

The diameter setting can be overridden with a numeric value by the optional pdiam keyword, in which case you
can specify the diameter setting with any valid particle attribute. The pdiam keyword overrides the diameter
setting with a specified numeric value. All particles will be drawn with that diameter, e.g. 1.5, which is in
whatever distance units the input script defines.

If type is specified for the color setting, then the color of each particle is determined by its type = species index.
By default the mapping of types to colors is as follows:

type 1 = red•
type 2 = green•
type 3 = blue•
type 4 = yellow•
type 5 = aqua•
type 6 = purple•

and repeats itself for types > 6. This mapping can be changed by the dump_modify pcolor command.

If proc is specified for the color setting, then the color of each particle is determined by the ID of the owning
processor. The default mapping of proc IDs to colors is that same as in the list above, except that proc P
corresponds to type P+1.

If type is specified for the diameter setting then the diameter of each particle is determined by its type = species
index. By default all types have diameter 1.0. This mapping can be changed by the dump_modify adiam
command.

If proc is specified for the diameter setting then the diameter of each particle will be the proc ID (0 up to
Nprocs-1) in whatever units you are using, which is undoubtably not what you want.

Any of the particle attributes listed in the dump custom command can also be used for the color or diameter
settings. They are interpreted in the following way.

If "vx", for example, is used as the color setting, then the color of the particle will depend on the x-component of
its velocity. The association of a per-particle value with a specific color is determined by a "color map", which
can be specified via the dump_modify cmap command. The basic idea is that the particle-attribute will be within a
range of values, and every value within the range is mapped to a specific color. Depending on how the color map
is defined, that mapping can take place via interpolation so that a value of -3.2 is halfway between "red" and
"blue", or discretely so that the value of -3.2 is "orange".

248

If "vx", for example, is used as the diameter setting, then the particle will be rendered using the x-component of
its velocity as the diameter. If the per-particle value <= 0.0, them the particle will not be drawn.

Rendering of grid cells

The grid keyword turns on the drawing of grid cells with the specified color attribute. For 2d, the grid cell is
shaded with an rectangle that is infinitely thin in the z dimension, which allows you to still see the particles in the
grid cell. For 3d, the grid cell is drawn as a solid brick, which will obscure the particles inside it.

Only grid cells in a geometric region can be drawn using the dump_modify region command.

The gridx and gridy and gridz keywords turn on the drawing of of a 2d plane of grid cells at the specified
coordinate. This is a way to draw one or more slices through a 3d image.

The dump_modify region command does not apply to the gridx and gridy and gridz plane drawing.

If proc is specified for the color setting, then the color of each grid cell is determined by its owning processor ID.
This is useful for visualizing the result of a load balancing of the grid cells, e.g. by the balance_grid or fix balance
commands. By default the mapping of proc IDs to colors is as follows:

proc ID 1 = red•
proc ID 2 = green•
proc ID 3 = blue•
proc ID 4 = yellow•
proc ID 5 = aqua•
proc ID 6 = purple•

and repeats itself for IDs > 6. Note that for this command, processor IDs range from 1 to Nprocs inclusive, instead
of the more customary 0 to Nprocs-1. This mapping can be changed by the dump_modify gcolor command.

The color setting can also be a per-grid compute or fix. In this case, it is specified as c_ID or c_ID[N] for a
compute and as f_ID and f_ID[N] for a fix.

This allows per grid cell values in a vector or array to be used to color the grid cells. The ID in the attribute should
be replaced by the actual ID of the compute or fix that has been defined previously in the input script. See the
compute or fix command for details.

If c_ID is used as a attribute, then the per-grid vector calculated by the compute is used. If c_ID[N] is used, then
N must be in the range from 1-M, which will use the Nth column of the per-grid array calculated by the compute.

If f_ID is used as a attribute, then the per-grid vector calculated by the fix is used. If f_ID[N] is used, then N must
be in the range from 1-M, which will use the Nth column of the per-grid array calculated by the fix.

The manner in which values in the vector or array are mapped to color is determined by the dump_modify cmap
command.

Rendering of surface elements

The surf keyword turns on the drawing of surface elements with the specified color attribute. For 2d, the surface
element is a line whose diameter is specified by the diam setting as a fraction of the minimum simulation box
length. For 3d it is a triangle and the diam setting is ignored. The entire surface is rendered, which in 3d will hide
any grid cells (or fractions of a grid cell) that are inside the surface.

249

The dump_modify region command does not apply to surface element drawing.

If one is specified for the color setting, then the color of every surface element is drawn with the color specified
by the dump_modify scolor keyword, which is gray by default.

If proc is specified for the color setting, then the color of each surface element is determined by its owning
processor ID. Surface elements are assigned to owning processors in a round-robin fashion. By default the
mapping of proc IDs to colors is as follows:

proc ID 1 = red•
proc ID 2 = green•
proc ID 3 = blue•
proc ID 4 = yellow•
proc ID 5 = aqua•
proc ID 6 = purple•

and repeats itself for IDs > 6. Note that for this command, processor IDs range from 1 to Nprocs inclusive, instead
of the more customary 0 to Nprocs-1. This mapping can be changed by the dump_modify scolor command, which
has not yet been added to SPARTA.

The color setting can also be a per-surf compute or fix. In this case, it is specified as c_ID or c_ID[N] for a
compute and as f_ID and f_ID[N] for a fix.

This allows per-surf values in a vector or array to be used to color the surface elemtns. The ID in the attribute
should be replaced by the actual ID of the compute or fix that has been defined previously in the input script. See
the compute or fix command for details.

If c_ID is used as a attribute, then the per-surf vector calculated by the compute is used. If c_ID[N] is used, then
N must be in the range from 1-M, which will use the Nth column of the per-surf array calculated by the compute.

If f_ID is used as a attribute, then the per-surf vector calculated by the fix is used. If f_ID[N] is used, then N must
be in the range from 1-M, which will use the Nth column of the per-surf array calculated by the fix.

The manner in which values in the vector or array are mapped to color is determined by the dump_modify cmap
command.

The size keyword sets the width and height of the created images, i.e. the number of pixels in each direction.

The view, center, up, zoom, and persp values determine how 3d simulation space is mapped to the 2d plane of the
image. Basically they control how the simulation box appears in the image.

All of the view, center, up, zoom, and persp values can be specified as numeric quantities, whose meaning is
explained below. Any of them can also be specified as an equal-style variable, by using v_name as the value,
where "name" is the variable name. In this case the variable will be evaluated on the timestep each image is
created to create a new value. If the equal-style variable is time-dependent, this is a means of changing the way
the simulation box appears from image to image, effectively doing a pan or fly-by view of your simulation.

The view keyword determines the viewpoint from which the simulation box is viewed, looking towards the center
point. The theta value is the vertical angle from the +z axis, and must be an angle from 0 to 180 degrees. The phi
value is an azimuthal angle around the z axis and can be positive or negative. A value of 0.0 is a view along the
+x axis, towards the center point. If theta or phi are specified via variables, then the variable values should be in

250

degrees.

The center keyword determines the point in simulation space that will be at the center of the image. Cx, Cy, and
Cz are speficied as fractions of the box dimensions, so that (0.5,0.5,0.5) is the center of the simulation box. These
values do not have to be between 0.0 and 1.0, if you want the simulation box to be offset from the center of the
image. Note, however, that if you choose strange values for Cx, Cy, or Cz you may get a blank image. Internally,
Cx, Cy, and Cz are converted into a point in simulation space. If flag is set to "s" for static, then this conversion is
done once, at the time the dump command is issued. If flag is set to "d" for dynamic then the conversion is
performed every time a new image is created. If the box size or shape is changing, this will adjust the center point
in simulation space.

The up keyword determines what direction in simulation space will be "up" in the image. Internally it is stored as
a vector that is in the plane perpendicular to the view vector implied by the theta and pni values, and which is also
in the plane defined by the view vector and user-specified up vector. Thus this internal vector is computed from
the user-specified up vector as

up_internal = view cross (up cross view)

This means the only restriction on the specified up vector is that it cannot be parallel to the view vector, implied
by the theta and phi values.

The zoom keyword scales the size of the simulation box as it appears in the image. The default zfactor value of 1
should display an image mostly filled by the particles in the simulation box. A zfactor > 1 will make the
simulation box larger; a zfactor < 1 will make it smaller. Zfactor must be a value > 0.0.

The persp keyword determines how much depth perspective is present in the image. Depth perspective makes
lines that are parallel in simulation space appear non-parallel in the image. A pfactor value of 0.0 means that
parallel lines will meet at infininty (1.0/pfactor), which is an orthographic rendering with no persepctive. A
pfactor value between 0.0 and 1.0 will introduce more perspective. A pfactor value > 1 will create a highly
skewed image with a large amount of perspective.

IMPORTANT NOTE: The persp keyword is not yet supported as an option.

The box keyword determines how the simulation box boundaries are rendered as thin cylinders in the image. If no
is set, then the box boundaries are not drawn and the diam setting is ignored. If yes is set, the 12 edges of the box
are drawn, with a diameter that is a fraction of the shortest box length in x,y,z (for 3d) or x,y (for 2d). The color of
the box boundaries can be set with the dump_modify boxcolor command.

The gline keyword determines how the outlines of grid cells are rendered as thin cylinders in the image. If the
gridx or gridy or gridz keywords are specified to draw a plane(s) of grid cells, then outlines of all cells in the
plane(s) are drawn. If the planar options are not used, then the outlines of all grid cells are drawn, whether the
grid keyword is specified or not. In this case, the dump_modify region command can be used to restrict which
grid cells the outlines are drawn for.

For the gline keywork, if no is set, then grid outlines are not drawn and the diam setting is ignored. If yes is set,
the 12 edges of each grid cell are drawn, with a diameter that is a fraction of the shortest box length in x,y,z (for
3d) or x,y (for 2d). The color of the grid cell outlines can be set with the dump_modify glinecolor command.

The sline keyword determines how the outlines of surface elements are rendered as thin cylinders in the image. If
no is set, then the surface element outlines are not drawn and the diam setting is ignored. If yes is set, a line is
drawn for 2d and a triangle outline for 3d surface elements, with a diameter that is a fraction of the shortest box
length in x,y,z (for 3d) or x,y (for 2d). The color of the surface element outlines can be set with the dump_modify

251

slinecolor command.

The axes keyword determines how the coordinate axes are rendered as thin cylinders in the image. If no is set,
then the axes are not drawn and the length and diam settings are ignored. If yes is set, 3 thin cylinders are drawn
to represent the x,y,z axes in colors red,green,blue. The origin of these cylinders will be offset from the lower left
corner of the box by 10%. The length setting determines how long the cylinders will be as a fraction of the
respective box lengths. The diam setting determines their thickness as a fraction of the shortest box length in x,y,z
(for 3d) or x,y (for 2d).

The shiny keyword determines how shiny the objects rendered in the image will appear. The sfactor value must be
a value 0.0 <= sfactor <= 1.0, where sfactor = 1 is a highly reflective surface and sfactor = 0 is a rough non-shiny
surface.

The ssao keyword turns on/off a screen space ambient occlusion (SSAO) model for depth shading. If yes is set,
then particles further away from the viewer are darkened via a randomized process, which is perceived as depth.
The calculation of this effect can increase the cost of computing the image by roughly 2x. The strength of the
effect can be scaled by the dfactor parameter. If no is set, no depth shading is performed.

A series of JPEG, PNG, or PPM images can be converted into a movie file and then played as a movie using
commonly available tools. Using dump style movie automates this step and avoids the intermediate step of writing
(many) image snapshot file.

To manually convert JPEG, PNG or PPM files into an animated GIF or MPEG or other movie file you can:

a) Use the ImageMagick convert program.

% convert *.jpg foo.gif
% convert -loop 1 *.ppm foo.mpg

Animated GIF files from ImageMagick are unoptimized. You can use a program like gifsicle to optimize
and massively shrink them. MPEG files created by ImageMagick are in MPEG-1 format with rather
inefficient compression and low quality.

•

b) Use QuickTime.

Select "Open Image Sequence" under the File menu Load the images into QuickTime to animate them
Select "Export" under the File menu Save the movie as a QuickTime movie (*.mov) or in another format.
QuickTime can generate very high quality and efficiently compressed movie files. Some of the supported
formats require to buy a license and some are not readable on all platforms until specific runtime libraries
are installed.

•

c) Use FFmpeg

FFmpeg is a command line tool that is available on many platforms and allows extremely flexible
encoding and decoding of movies.

cat snap.*.jpg | ffmpeg -y -f image2pipe -c:v mjpeg -i - -b:v 2000k movie.m4v
cat snap.*.ppm | ffmpeg -y -f image2pipe -c:v ppm -i - -b:v 2400k movie.avi

Frontends for FFmpeg exist for multiple platforms. For more information see the FFmpeg homepage

•

You can play a movie file as follows:

a) Use your browser to view an animated GIF movie.•

252

http://www.ffmpeg.org/

Select "Open File" under the File menu Load the animated GIF file
b) Use the freely available mplayer or ffplay tool to view a movie. Both are available for multiple OSes
and support a large variety of file formats and decoders.

% mplayer foo.mpg
% ffplay bar.avi

•

c) Use the Pizza.py animate tool, which works directly on a series of image files.

a = animate("foo*.jpg")

•

d) QuickTime and other Windows- or MacOS-based media players can obviously play movie files
directly. Similarly for corresponding tools bundled with Linux desktop environments. However, due to
licensing issues with some file formats, the formats may require installing additional libraries, purchasing
a license, or may not be supported.

•

Restrictions:

To write JPEG images, you must use the -DSPARTA_JPEG switch when building SPARTA and link with a
JPEG library. To write PNG images, you must use the -DSPARTA_PNG switch when building SPARTA and link
with a PNG library.

To write movie files, you must use the -SPARTA_FFMPEG switch when building SPARTA. The FFmpeg
executable must also be available on the machine where SPARTA is being run. Typically it's name is lowercase,
i.e. ffmpeg.

See Section 2.2.2 section of the documentation for details on how to compile with optional switches.

Note that since FFmpeg is run as an external program via a pipe, SPARTA has limited control over its execution
and no knowledge about errors and warnings printed by it. Those warnings and error messages will be printed to
the screen only. Due to the way image data is communicated to FFmpeg, it will often print the message + pipe::
Input/output error :pre + which can be safely ignored. Other warnings and errors have to be addressed according
to the FFmpeg documentation. One known issue is that certain movie file formats (e.g. MPEG level 1 and 2
format streams) have video bandwith limits that can be crossed when rendering too large of image sizes. Typical
warnings look like this:

[mpeg @ 0x98b5e0] packet too large, ignoring buffer limits to mux it
[mpeg @ 0x98b5e0] buffer underflow st=0 bufi=281407 size=285018
[mpeg @ 0x98b5e0] buffer underflow st=0 bufi=283448 size=285018

In this case it is recommended to either reduce the size of the image or encode in a different format that is also
supported by your copy of FFmpeg, and which does not have this limitation (e.g. .avi, .mkv, mp4).

Related commands:

dump, dump_modify, undump

Default:

The defaults for the keywords are as follows:

particle = yes•
pdiam = not specified (use diameter setting)•
grid = not specified (no drawing of grid cells)•
gridx = not specified (no drawing of x-plane of grid cells)•

253

https://lammps.github.io/pizza
https://lammps.gitbug.io/pizza/doc/animate.html

gridy = not specified (no drawing of y-plane of grid cells)•
gridz = not specified (no drawing of z-plane of grid cells)•
surf = not specified (no drawing of surface elements)•
size = 512 512•
view = 60 30 (for 3d)•
view = 0 0 (for 2d)•
center = s 0.5 0.5 0.5•
up = 0 0 1 (for 3d)•
up = 0 1 0 (for 2d)•
zoom = 1.0•
persp = 0.0•
box = yes 0.02•
gline = no 0.0•
sline = no 0.0•
axes = no 0.0 0.0•
shiny = 1.0•
ssao = no•

254

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

dump_modify command

Syntax:

dump_modify dump-ID keyword values ...

dump-ID = ID of dump to modify•
one or more keyword/value pairs may be appended•
these keywords apply to various dump styles•
keyword = append or buffer or every or fileper or first or flush or format or nfile or pad or region or
thresh

append arg = yes or no
buffer arg = yes or no
every arg = N

 N = dump every this many timesteps
 N can be a variable (see below)

fileper arg = Np
 Np = write one file for every this many processors

first arg = yes or no
flush arg = yes or no
format args = line string, int string, float string, M string, or none

 string = C-style format string
 M = integer from 1 to N, where N = # of per-atom quantities being output

nfile arg = Nf
 Nf = write this many files, one from each of Nf processors

pad arg = Nchar = # of characters to convert timestep to
region arg = region-ID or "none"
thresh args = attribute operation value

 attribute = same attributes (x,fy,etotal,sxx,etc) used by dump custom style
 operation = "

•

these keywords apply only to the (image and movie styles•
keyword = bcolor or bdiam or backcolor or bitrate or boxcolor or cmap or color or framerate or gcolor or
glinecolor or pcolor or pdiam or scolor or slinecolor

backcolor arg = color
 color = name of color for background

bitrate arg = rate
 rate = target bitrate for movie in kbps

boxcolor arg = color
 color = name of color for box lines

cmap args = mode lo hi style delta N entry1 entry2 ... entryN
 mode = particle or grid or surf or gridx or gridy or gridz
 lo = number or min = lower bound of range of color map
 hi = number or max = upper bound of range of color map
 style = 2 letters = "c" or "d" or "s" plus "a" or "f"
 "c" for continuous
 "d" for discrete
 "s" for sequential
 "a" for absolute
 "f" for fractional
 delta = binsize (only used for style "s", otherwise ignored)
 binsize = range is divided into bins of this width
 N = # of subsequent entries
 entry = value color (for continuous style)
 value = number or min or max = single value within range
 color = name of color used for that value
 entry = lo hi color (for discrete style)

•

255

https://sparta.github.io

 lo/hi = number or min or max = lower/upper bound of subset of range
 color = name of color used for that subset of values
 entry = color (for sequential style)
 color = name of color used for a bin of values

color args = name R G B
 name = name of color
 R,G,B = red/green/blue numeric values from 0.0 to 1.0

framerate arg = fps
 fps = frames per second for movie

gcolor args = proc color
 proc = proc ID or range of IDs (see below)
 color = name of color or color1/color2/...

glinecolor arg = color
 color = name of color for grid cell outlines

pcolor args = type color
 type = particle type or range of types or proc ID or range of IDs (see below)
 color = name of color or color1/color2/...

pdiam args = type diam
 type = particle type or range of types (see below)
 diam = diameter of particles of that type (distance units)

scolor args = proc color
 proc = proc ID or range of IDs (see below)
 color = name of color for surf one option

slinecolor arg = color
 color = name of color for surface element outlines

Examples:

dump_modify 1 format line "%d %d %20.15g %g %g"
dump_modify 1 format float %20.15g
dump_modify myDump thresh x <0.0 thresh vx >= 3.0
dump_modify 1 every 1000
dump_modify 1 every v_myVar
dump_modify 1 cmap particle min max cf 0.0 3 min green 0.5 yellow max blue boxcolor red

Description:

Modify the parameters of a previously defined dump command. Not all parameters are relevant to all dump styles.

These keywords apply to all dump styles unless otherwise noted. The descriptions give details.

The append keyword applies to all dump styles except image and movie. It also applies only to text output files,
not to binary or gzipped files. If specified as yes, then dump snapshots are appended to the end of an existing
dump file. If specified as no, then a new dump file will be created which will overwrite an existing file with the
same name. This keyword can only take effect if the dump_modify command is used after the dump command,
but before the first command that causes dump snapshots to be output, e.g. a run command. Once the dump file
has been opened, this keyword has no further effect.

The buffer keyword applies only all dump styles except image and movie. It also applies only to text output files,
not to binary or gzipped files. If specified as yes, which is the default, then each processor writes its output into an
internal text buffer, which is then sent to the processor(s) which perform file writes, and written by those
processors(s) as one large chunk of text. If specified as no, each processor sends its per-atom data in binary format
to the processor(s) which perform file wirtes, and those processor(s) format and write it line by line into the
output file.

The buffering mode is typically faster since each processor does the relatively expensive task of formatting the

256

output for its own atoms. However it requires about twice the memory (per processor) for the extra buffering.

The every keyword changes the dump frequency originally specified by the dump command to a new value. The
every keyword can be specified in one of two ways. It can be a numeric value in which case it must be > 0. Or it
can be an equal-style variable, which should be specified as v_name, where name is the variable name. In this
case, the variable is evaluated at the beginning of a run to determine the next timestep at which a dump snapshot
will be written out. On that timestep, the variable will be evaluated again to determine the next timestep, etc. Thus
the variable should return timestep values. See the stagger() and logfreq() math functions for equal-style variables,
as examples of useful functions to use in this context. Other similar math functions could easily be added as
options for equal-style variables. When using the variable option with the every keyword, you also need to use the
first option if you want an initial snapshot written to the dump file.

For example, the following commands will write snapshots at timesteps 0,10,20,30,100,200,300,1000,2000,etc:

variable s equal logfreq(10,3,10)
dump 1 particle all 100 tmp.dump id type x y z
dump_modify 1 every v_s first yes

The fileper keyword is documented below with the nfile keyword.

The first keyword determines whether a dump snapshot is written on the very first timestep after the dump
command is invoked. This will always occur if the current timestep is a multiple of N, the frequency specified in
the dump command, including timestep 0. But if this is not the case, a dump snapshot will only be written if the
setting of this keyword is yes. If it is no, which is the default, then it will not be written.

The flush keyword applies to all dump styles except image and movie. It also applies only when the styles are
used to write multiple successive snapshots to the same file. It determines whether a flush operation is invoked
after a dump snapshot is written to the dump file. A flush insures the output in that file is current (no buffering by
the OS), even if SPARTA halts before the simulation completes.

The format keyword can be used to change the default numeric format output by the text-based dump styles:
particle, grid, surf.

All the specified format strings are C-style formats, e.g. as used by the C/C++ printf() command. The line
keyword takes a single argument which is the format string for an entire line of output with N fields for each
particle, grid cell, or suraface elememt, which you must enclose in quotes if it is more than one field. The int and
float keywords take a single format argument and are applied to all integer or floating-point quantities output. The
setting for M string also takes a single format argument which is used for the Mth value output in each line, e.g.
the 5th column is output in high precision for "format 5 %20.15g".

The format keyword can be used multiple times. The precedence is that for each value in a line of output, the M
format (if specified) is used, else the int or float setting (if specified) is used, else the line setting (if specified) for
that value is used, else the default setting is used. A setting of none clears all previous settings, reverting all values
to their default format.

NOTE: Grid cell IDs are stored internally as 4-byte or 8-byte signed integers, depending on how SPARTA was
compiled. When specifying the format int option you can use a "%d"-style format identifier in the format string
and SPARTA will convert this to the corresponding 8-byte form it it is needed when outputting those values.
However, when specifying the line option or format M string option for those values, you should specify a format
string appropriate for an 8-byte signed integer, e.g. one with "%ld", if SPARTA was compiled with the
-DSPARTA_BIGBIG option for 8-byte IDs.

257

The nfile or fileper keywords apply to all dump styles except image and movie. They can be used in conjunction
with the "%" wildcard character in the specified dump file name. As explained on the dump command doc page,
the "%" character causes the dump file to be written in pieces, one piece for each of P processors. By default P =
the number of processors the simulation is running on. The nfile or fileper keyword can be used to set P to a
smaller value, which can be more efficient when running on a large number of processors.

The nfile keyword sets P to the specified Nf value. For example, if Nf = 4, and the simulation is running on 100
processors, 4 files will be written, by processors 0,25,50,75. Each will collect information from itself and the next
24 processors and write it to a dump file.

For the fileper keyword, the specified value of Np means write one file for every Np processors. For example, if
Np = 4, every 4th processor (0,4,8,12,etc) will collect information from itself and the next 3 processors and write
it to a dump file.

The pad keyword only applies when the dump filename is specified with a wildcard "*" character which becomes
the timestep. If pad is 0, which is the default, the timestep is converted into a string of unpadded length, e.g. 100
or 12000 or 2000000. When pad is specified with Nchar > 0, the string is padded with leading zeroes so they are
all the same length = Nchar. For example, pad 7 would yield 0000100, 0012000, 2000000. This can be useful so
that post-processing programs can easily read the files in ascending timestep order.

The region keyword only applies to the dump particle and image styles. If specified, only particles in the region
will be written to the dump file or included in the image. Only one region can be applied as a filter (the last one
specified). See the region command for more details. Note that a region can be defined as the "inside" or "outside"
of a geometric shape, and it can be the "union" or "intersection" of a series of simpler regions.

The thresh keyword only applies to the dump particle and image styles. Multiple thresholds can be specified.
Specifying "none" turns off all threshold criteria. If thresholds are specified, only particles whose attributes meet
all the threshold criteria are written to the dump file or included in the image. The possible attributes that can be
tested for are the same as those that can be specified in the dump particle command. Note that different attributes
can be output by the dump particle command than are used as threshold criteria by the dump_modify command.
E.g. you can output the coordinates of particles whose velocity components are above some threshold.

These keywords apply only to the dump image and dump movie styles. Any keyword that affects an image, also
affects a movie, since the movie is simply a collection of images. Some of the keywords only affect the dump
movie style. The descriptions give details.

The backcolor keyword can be used with the dump image command to set the background color of the images.
The color name can be any of the 140 pre-defined colors (see below) or a color name defined by the
dump_modify color option.

The bitrate keyword can be used with the dump movie command to define the size of the resulting movie file and
its quality via setting how many kbits per second are to be used for the movie file. Higher bitrates require less
compression and will result in higher quality movies. The quality is also determined by the compression format
and encoder. The default setting is 2000 kbit/s, which will result in average quality with older compression
formats.

IMPORTANT NOTE: Not all movie file formats supported by dump movie allow the bitrate to be set. If not, the
setting is silently ignored.

258

The boxcolor keyword can be used with the dump image command to set the color of the simulation box drawn
around the particles in each image. See the "dump image box" command for how to specify that a box be drawn.
The color name can be any of the 140 pre-defined colors (see below) or a color name defined by the
dump_modify color option.

The cmap keyword can be used with the dump image command to define a color map that is used to draw
"objects" which can be particles, grid cells, or surface elements. The mode setting must be particle or grid or surf
or gridx or gridy or gridz which correspond to the same keywords in the dump image command.

Color maps are used to assign a specific RGB (red/green/blue) color value to an individual object when it is
drawn, based on the object's attribute, which is a numeric value, e.g. the x-component of velocity for a particle, if
the particle-attribute "vx" was specified in the dump image command.

The basic idea of a color map is that the attribute will be within a range of values, and that range is associated
with a a series of colors (e.g. red, blue, green). A specific value (vx = -3.2) can then mapped to the series of colors
(e.g. halfway between red and blue), and a specific color is determined via an interpolation procedure.

There are many possible options for the color map, enabled by the cmap keyword. Here are the details.

The lo and hi settings determine the range of values allowed for the attribute. If numeric values are used for lo
and/or hi, then values that are lower/higher than that value are set to the value. I.e. the range is static. If lo is
specified as min or hi as max then the range is dynamic, and the lower and/or upper bound will be calculated each
time an image is drawn, based on the set of objects being visualized.

The style setting is two letters, such as "ca". The first letter is either "c" for continuous, "d" for discrete, or "s" for
sequential. The second letter is either "a" for absolute, or "f" for fractional.

A continuous color map is one in which the color changes continuously from value to value within the range. A
discrete color map is one in which discrete colors are assigned to sub-ranges of values within the range. A
sequential color map is one in which discrete colors are assigned to a sequence of sub-ranges of values covering
the entire range.

An absolute color map is one in which the values to which colors are assigned are specified explicitly as values
within the range. A fractional color map is one in which the values to which colors are assigned are specified as a
fractional portion of the range. For example if the range is from -10.0 to 10.0, and the color red is to be assigned
to objects with a value of 5.0, then for an absolute color map the number 5.0 would be used. But for a fractional
map, the number 0.75 would be used since 5.0 is 3/4 of the way from -10.0 to 10.0.

The delta setting is only specified if the style is sequential. It specifies the bin size to use within the range for
assigning consecutive colors to. For example, if the range is from -10.0 to 10.0 and a delta of 1.0 is used, then 20
colors will be assigned to the range. The first will be from -10.0 <= color1 < -9.0, then 2nd from -9.0 <= color2 <
-8.0, etc.

The N setting is how many entries follow. The format of the entries depends on whether the color map style is
continuous, discrete or sequential. In all cases the color setting can be any of the 140 pre-defined colors (see
below) or a color name defined by the dump_modify color option.

For continuous color maps, each entry has a value and a color. The value is either a number within the range of
values or min or max. The value of the first entry must be min and the value of the last entry must be max. Any
entries in between must have increasing values. Note that numeric values can be specified either as absolute
numbers or as fractions (0.0 to 1.0) of the range, depending on the "a" or "f" in the style setting for the color map.

259

Here is how the entries are used to determine the color of an individual object, given the value X of its attribute. X
will fall between 2 of the entry values. The color of the object is linearly interpolated (in each of the RGB values)
between the 2 colors associated with those entries. For example, if X = -5.0 and the 2 surrounding entries are
"red" at -10.0 and "blue" at 0.0, then the object's color will be halfway between "red" and "blue", which happens
to be "purple".

For discrete color maps, each entry has a lo and hi value and a color. The lo and hi settings are either numbers
within the range of values or lo can be min or hi can be max. The lo and hi settings of the last entry must be min
and max. Other entries can have any lo and hi values and the sub-ranges of different values can overlap. Note that
numeric lo and hi values can be specified either as absolute numbers or as fractions (0.0 to 1.0) of the range,
depending on the "a" or "f" in the style setting for the color map.

Here is how the entries are used to determine the color of an individual object, given the value X of its attribute.
The entries are scanned from first to last. The first time that lo <= X <= hi, X is assigned the color associated with
that entry. You can think of the last entry as assigning a default color (since it will always be matched by X), and
the earlier entries as colors that override the default. Also note that no interpolation of a color RGB is done. All
objects will be drawn with one of the colors in the list of entries.

For sequential color maps, each entry has only a color. Here is how the entries are used to determine the color of
an individual object, given the value X of its attribute. The range is partitioned into N bins of width binsize. Thus
X will fall in a specific bin from 1 to N, say the Mth bin. If it falls on a boundary between 2 bins, it is considered
to be in the higher of the 2 bins. Each bin is assigned a color from the E entries. If E < N, then the colors are
repeated. For example if 2 entries with colors red and green are specified, then the odd numbered bins will be red
and the even bins green. The color of the object is the color of its bin. Note that the sequential color map is really
a shorthand way of defining a discrete color map without having to specify where all the bin boundaries are.

The color keyword can be used with the dump image command to define a new color name, in addition to the
140-predefined colors (see below), and associates 3 red/green/blue RGB values with that color name. The color
name can then be used with any other dump_modify keyword that takes a color name as a value. The RGB values
should each be floating point values between 0.0 and 1.0 inclusive.

When a color name is converted to RGB values, the user-defined color names are searched first, then the 140
pre-defined color names. This means you can also use the color keyword to overwrite one of the pre-defined color
names with new RBG values.

The framerate keyword can be used with the dump movie command to define the duration of the resulting movie
file. Movie files written by the dump movie command have a default frame rate of 24 frames per second and the
images generated will be converted at that rate. Thus a sequence of 1000 dump images will result in a movie of
about 42 seconds. To make a movie run longer you can either generate images more frequently or lower the frame
rate. To speed a movie up, you can do the inverse. Using a frame rate higher than 24 is not recommended, as it
will result in simply dropping the rendered images. It is more efficient to dump images less frequently.

The gcolor keyword can be used one or more times with the dump image command, only when its grid color
setting is proc, to set the color that grid cells will be drawn in the image.

The proc setting should be an integer from 1 to Nprocs = the number of processors. A wildcard asterisk can be
used in place of or in conjunction with the proc argument to specify a range of processor IDs. This takes the form
"*" or "*n" or "n*" or "m*n". If N = the number of processors, then an asterisk with no numeric values means all
procs from 1 to N. A leading asterisk means all procs from 1 to n (inclusive). A trailing asterisk means all procs
from n to N (inclusive). A middle asterisk means all procs from m to n (inclusive). Note that for this command,
processor IDs range from 1 to Nprocs inclusive, instead of the more customary 0 to Nprocs-1.

260

The specified color can be a single color which is any of the 140 pre-defined colors (see below) or a color name
defined by the dump_modify color option. Or it can be two or more colors separated by a "/" character, e.g.
red/green/blue. In the former case, that color is assigned to all the specified processors. In the latter case, the list
of colors are assigned in a round-robin fashion to each of the specified processors.

The glinecolor keyword can be used with the dump image command to set the color of the grid cell outlines
drawn around the grid cells in each image. See the "dump image gline" command for how to specify that cell
outlines be drawn. The color name can be any of the 140 pre-defined colors (see below) or a color name defined
by the dump_modify color option.

The pcolor keyword can be used one or more times with the dump image command, only when its particle color
setting is type or procs, to set the color that particles will be drawn in the image.

If the particle color setting is type, then the specified type for the pcolor keyword should be an integer from 1 to
Ntypes = the number of particle types. A wildcard asterisk can be used in place of or in conjunction with the type
argument to specify a range of particle types. This takes the form "*" or "*n" or "n*" or "m*n". If N = the number
of particle types, then an asterisk with no numeric values means all types from 1 to N. A leading asterisk means
all types from 1 to n (inclusive). A trailing asterisk means all types from n to N (inclusive). A middle asterisk
means all types from m to n (inclusive).

If the particle color setting is proc, then the specified type for the pcolor keyword should be an integer from 1 to
Nprocs = the number of processors. A wildcard asterisk can be used in place of or in conjunction with the type
argument to specify a range of processor IDs, just as described above for particle types. Note that for this
command, processor IDs range from 1 to Nprocs inclusive, instead of the more customary 0 to Nprocs-1.

The specified color can be a single color which is any of the 140 pre-defined colors (see below) or a color name
defined by the dump_modify color option. Or it can be two or more colors separated by a "/" character, e.g.
red/green/blue. In the former case, that color is assigned to all the specified particle types. In the latter case, the
list of colors are assigned in a round-robin fashion to each of the specified particle types.

The pdiam keyword can be used with the dump image command, when its particle diameter setting is type, to set
the size that particles of each type will be drawn in the image. The specified type should be an integer from 1 to
Ntypes. As with the pcolor keyword, a wildcard asterisk can be used as part of the type argument to specify a
range of particle types. The specified diam is the size in whatever distance units the input script is using.

The scolor keyword can be used one or more times with the dump image command, only when its surface
element color setting is one or proc, to set the color that surface elements will be drawn in the image.

When the surf color is one, the proc setting for this command is ignored.

When the surf color is proc, the proc setting for this command should be an integer from 1 to Nprocs = the
number of processors. A wildcard asterisk can be used in place of or in conjunction with the proc argument to
specify a range of processor IDs. This takes the form "*" or "*n" or "n*" or "m*n". If N = the number of
processors, then an asterisk with no numeric values means all procs from 1 to N. A leading asterisk means all
procs from 1 to n (inclusive). A trailing asterisk means all procs from n to N (inclusive). A middle asterisk means
all procs from m to n (inclusive). Note that for this command, processor IDs range from 1 to Nprocs inclusive,
instead of the more customary 0 to Nprocs-1.

When the surf color is one, the specified color setting for this command must be a single color which is any of the
140 pre-defined colors (see below) or a color name defined by the dump_modify color option.

261

When the surf color is proc, the color setting for this command can be one or more colors separated by a "/"
character, e.g. red/green/blue. For a single color, that color is assigned to all the specified processors. For two or
more colors, the list of colors are assigned in a round-robin fashion to each of the specified processors.

The slinecolor keyword can be used with the dump image command to set the color of the surface element
outlines drawn around the surface elements in each image. See the "dump image sline" command for how to
specify that surface element outlines be drawn. The color name can be any of the 140 pre-defined colors (see
below) or a color name defined by the dump_modify color option.

Restrictions: none

Related commands:

dump, dump image, undump

Default:

The option defaults are

append = no•
buffer = yes for all dump styles except image and movie•
backcolor = black•
boxcolor = yellow•
cmap = mode min max cf 0.0 2 min blue max red, for all modes•
color = 140 color names are pre-defined as listed below•
every = whatever it was set to via the dump command•
fileper = # of processors•
first = no•
flush = yes•
format = %d and %g for each integer or floating point value•
gcolor = * red/green/blue/yellow/aqua/cyan•
glinecolor = white•
nfile = 1•
pad = 0•
pcolor = * red/green/blue/yellow/aqua/cyan•
pdiam = * 1.0•
region = none•
scolor = * gray•
slinecolor = white•
thresh = none•

These are the 140 colors that SPARTA pre-defines for use with the dump image and dump_modify commands.
Additional colors can be defined with the dump_modify color command. The 3 numbers listed for each name are
the RGB (red/green/blue) values. Divide each value by 255 to get the equivalent 0.0 to 1.0 value.

aliceblue = 240,
248, 255

antiquewhite = 250, 235,
215 aqua = 0, 255, 255 aquamarine = 127,

255, 212
azure = 240, 255,
255

beige = 245, 245,
220 bisque = 255, 228, 196 black = 0, 0, 0 blanchedalmond =

255, 255, 205 blue = 0, 0, 255

blueviolet = 138,
43, 226 brown = 165, 42, 42 burlywood = 222, 184,

135
cadetblue = 95, 158,
160

chartreuse = 127,
255, 0

262

chocolate = 210,
105, 30 coral = 255, 127, 80 cornflowerblue = 100,

149, 237
cornsilk = 255, 248,
220

crimson = 220, 20,
60

cyan = 0, 255, 255 darkblue = 0, 0, 139 darkcyan = 0, 139, 139 darkgoldenrod =
184, 134, 11

darkgray = 169,
169, 169

darkgreen = 0, 100,
0

darkkhaki = 189, 183,
107

darkmagenta = 139, 0,
139

darkolivegreen = 85,
107, 47

darkorange = 255,
140, 0

darkorchid = 153,
50, 204 darkred = 139, 0, 0 darksalmon = 233,

150, 122
darkseagreen = 143,
188, 143

darkslateblue = 72,
61, 139

darkslategray = 47,
79, 79

darkturquoise = 0, 206,
209

darkviolet = 148, 0,
211

deeppink = 255, 20,
147

deepskyblue = 0,
191, 255

dimgray = 105, 105,
105

dodgerblue = 30, 144,
255 firebrick = 178, 34, 34 floralwhite = 255,

250, 240
forestgreen = 34,
139, 34

fuchsia = 255, 0,
255

gainsboro = 220, 220,
220

ghostwhite = 248, 248,
255 gold = 255, 215, 0 goldenrod = 218,

165, 32
gray = 128, 128,
128 green = 0, 128, 0 greenyellow = 173,

255, 47
honeydew = 240,
255, 240

hotpink = 255, 105,
180

indianred = 205, 92,
92 indigo = 75, 0, 130 ivory = 255, 240, 240 khaki = 240, 230,

140
lavender = 230, 230,
250

lavenderblush =
255, 240, 245 lawngreen = 124, 252, 0 lemonchiffon = 255,

250, 205
lightblue = 173, 216,
230

lightcoral = 240,
128, 128

lightcyan = 224,
255, 255

lightgoldenrodyellow =
250, 250, 210

lightgreen = 144, 238,
144

lightgrey = 211, 211,
211

lightpink = 255,
182, 193

lightsalmon = 255,
160, 122

lightseagreen = 32, 178,
170

lightskyblue = 135,
206, 250

lightslategray = 119,
136, 153

lightsteelblue = 176,
196, 222

lightyellow = 255,
255, 224 lime = 0, 255, 0 limegreen = 50, 205,

50
linen = 250, 240,
230

magenta = 255, 0,
255

maroon = 128, 0, 0 mediumaquamarine =
102, 205, 170

mediumblue = 0, 0,
205

mediumorchid =
186, 85, 211

mediumpurple =
147, 112, 219

mediumseagreen =
60, 179, 113

mediumslateblue = 123,
104, 238

mediumspringgreen =
0, 250, 154

mediumturquoise =
72, 209, 204

mediumvioletred =
199, 21, 133

midnightblue = 25,
25, 112

mintcream = 245, 255,
250

mistyrose = 255, 228,
225

moccasin = 255,
228, 181

navajowhite = 255,
222, 173

navy = 0, 0, 128 oldlace = 253, 245, 230 olive = 128, 128, 0 olivedrab = 107,
142, 35

orange = 255, 165,
0

orangered = 255,
69, 0 orchid = 218, 112, 214 palegoldenrod = 238,

232, 170
palegreen = 152,
251, 152

paleturquoise = 175,
238, 238

palevioletred = 219,
112, 147

papayawhip = 255, 239,
213

peachpuff = 255, 239,
213 peru = 205, 133, 63 pink = 255, 192,

203
plum = 221, 160,
221

powderblue = 176, 224,
230 purple = 128, 0, 128 red = 255, 0, 0 rosybrown = 188,

143, 143
royalblue = 65, 105,
225

saddlebrown = 139, 69,
19

salmon = 250, 128,
114

sandybrown = 244,
164, 96

seagreen = 46, 139,
87

seashell = 255, 245,
238 sienna = 160, 82, 45 silver = 192, 192, 192 skyblue = 135, 206,

235
slateblue = 106, 90,
205

slategray = 112,
128, 144 snow = 255, 250, 250 springgreen = 0, 255,

127
steelblue = 70, 130,
180 tan = 210, 180, 140

teal = 0, 128, 128 thistle = 216, 191, 216 tomato = 253, 99, 71

263

turquoise = 64, 224,
208

violet = 238, 130,
238

wheat = 245, 222,
179 white = 255, 255, 255 whitesmoke = 245,

245, 245 yellow = 255, 255, 0 yellowgreen = 154,
205, 50

264

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

echo command

Syntax:

echo style

style = none or screen or log or both•

Examples:

echo both
echo log

Description:

This command determines whether SPARTA echoes each input script command to the screen and/or log file as it
is read and processed. If an input script has errors, it can be useful to look at echoed output to see the last
command processed.

The command-line switch -echo can be used in place of this command.

Restrictions: none

Related commands: none

Default:

echo log

265

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix command

Syntax:

fix ID style args

ID = user-assigned name for the fix•
style = one of a long list of possible style names (see below)•
args = arguments used by a particular style•

Examples:

fix 1 grid/check 100 warn
fix 1 ave/time all 100 5 1000 c_myTemp c_thermo_temp file temp.profile

Description:

Set a fix that will be applied to the system. In SPARTA, a "fix" is an operation that is applied to the system during
timestepping. Examples include adding particles via inlet boundary conditions or computing diagnostics. Code for
new fixes can be added to SPARTA; see Section 10 of the manual for details.

Fixes perform their operations at different stages of the timestep. If 2 or more fixes operate at the same stage of
the timestep, they are invoked in the order they were specified in the input script.

The ID for a fix is used to identify the fix in other commands. Each fix ID must be unique; see an exception
below. The ID can only contain alphanumeric characters and underscores. You can specify multiple fixes of the
same style so long as they have different IDs. A fix can be deleted with the unfix command, after which its ID can
be re-used.

IMPORTANT NOTE: The unfix command is the only way to turn off a fix; simply specifying a new fix with the
same style and a different ID will not turn off the first one.

If you specify a new fix with the same ID and style as an existing fix, the old fix is deleted and the new one is
created (presumably with new settings). This is the same as if an "unfix" command were first performed on the
old fix, except that the new fix is kept in the same order relative to the existing fixes as the old one originally was.

Some fixes store an internal "state" which is written to binary restart files via the restart or write_restart
commands. This allows the fix to continue on with its calculations in a restarted simulation. See the read_restart
command for info on how to re-specify a fix in an input script that reads a restart file. See the doc pages for
individual fixes for info on which ones can be restarted.

Each fix style has its own doc page which describes its arguments and what it does, as listed below. Here is an
alphabetic list of fix styles available in SPARTA:

ablate - alter implicit surfaces within each grid cell•
adapt - on-the-fly grid adaptation•
ambipolar - ambipolar approximation for ionized plasmas•
ave/grid - compute per grid cell time-averaged quantities•
ave/histo - compute/output time averaged histograms•
ave/histo/weight - compute/output weighted histograms•

266

https://sparta.github.io

ave/surf - compute per surface element time-averaged quantities•
ave/time - compute/output global time-averaged quantities•
balance - perform dynamic load-balancing•
dt/reset - adjust global timestep dynamically•
emit/face - emit particles at global boundaries•
emit/face/file - emit particles at global boundaries using a distribution defined in a file•
emit/surf - emit particles at surfaces•
field/grid - apply an external field on a per grid cell basis•
field/particle - apply an external field on a per particle basis•
grid/check - check if particles are in the correct grid cell•
move/surf - move surfaces dynamically during a simulation•
print - print text and variables during a simulation•
surf/temp - compute per-surf temperatures dynamically•
temp/global/rescale - rescale particle temperatures•
temp/rescale - rescale particle temperatures within each grid cell•
surf/temp - compute per-surf temperatures dynamically•
vibmode - discrete vibrational energy modes•

There are also additional accelerated compute styles included in the SPARTA distribution for faster performance
on specific hardware. The list of these with links to the individual styles are given in the pair section of this page.

In addition to the operation they perform, some fixes also produce one of four styles of quantities: global,
per-particle, per-grid, or per-surf. These can be used by other commands or output as described below. A global
quantity is one or more system-wide values, e.g. the temperature of the system. A per-particle quantity is one or
more values per particle, e.g. the kinetic energy of each particle. A per-grid quantity is one or more values per
grid cell. A per-surf quantity is one or more values per surface element.

Global, per-particle, per-grid, and per-surf quantities each come in two forms: a single scalar value or a vector of
values. Additionaly, global quantities can also be a 2d array of values. The doc page for each fix describes the
style and kind of values it produces, e.g. a per-particle vector. Some fixes can produce more than one form of a
single style, e.g. a global scalar and a global vector.

When a fix quantity is accessed, as in many of the output commands discussed below, it can be referenced via the
following bracket notation, where ID is the ID of the fix:

f_ID entire scalar, vector, or array
f_ID[I] one element of vector, one column of array
f_ID[I][J] one element of array

In other words, using one bracket reduces the dimension of the quantity once (vector -> scalar, array -> vector).
Using two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar fix values as
input can also process elements of a vector or array.

Note that commands and variables which use fix quantities typically do not allow for all kinds, e.g. a command
may require a vector of values, not a scalar. This means there is no ambiguity about referring to a fix quantity as
f_ID even if it produces, for example, both a scalar and vector. The doc pages for various commands explain the
details.

Any values generated by a fix can be used in several ways:

Global values can be output via the stats_style command. Or the values can be referenced in a variable
equal or variable atom command.

•

267

Per-particle values can be output via the dump particle command. Or the per-particle values can be
referenced in an particle-style variable.

•

Per-grid values can be output via the dump grid command. Or the per-grid values can be referenced in a
grid-style variable.

•

Restrictions: none

Related commands:

unfix

Default: none

268

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix ablate command

Syntax:

fix ID ablate group-ID Nevery scale source maxrandom keyword value ...

ID is documented in fix command•
ablate = style name of this fix command•
group-ID = ID of group of grid cells that contain implicit surfaces•
Nevery = perform ablation once every Nevery steps•
scale = scale factor to convert source to grid corner point value decrement•
source = computeID or fixID or uniform or random

 computeID = c_ID or c_ID[n] for a compute that calculates per grid cell values
 fixID = f_ID or f_ID[n] for a fix that calculates per grid cell values
 v_name = per-grid vector calculated by a grid-style variable with name
 uniform = perform a uniform decrement
 random = perform a random decrement

•

maxrandom = maximum per grid cell decrement as an integer (only specified if source = random or
uniform)

•

zero or more keyword/value pairs may be appended•
keyword = mindist or multiple

mindist value = fraction
 fraction = minimum fractional distance along cell edge for triangle/line vertices (value > 0 and <0.5)

multiple value = yes or no

•

Examples:

fix 1 ablate surfcells 1000 10.0 c_tally
fix 1 ablate surfcells 0 0.0 random 10
fix fablate ablate inner 0 0.2 random 0 mindist 0.02

Description:

Perform ablation once every Nevery steps on a set of grid cell corner points to induce new implicit surface
elements in those grid cells. This command is also used as an argument to the read_isurf command so that the grid
corner point values it reads from a file can be assigned to and stored by each grid cell.

Here are simulation snapshots of 2d and 3d implicit surface models through which particles flow. Click on any
image for a larger image. The 1st and 3rd images are the initial states of the porous media. The 2nd and 4th
images are snapshots midway through an ablation simulation. In the 2d case, the colorings are by processor for
sub-domains each owns. Particles flow from left to right. The implicit triangles for the 3d case were created via
Marching Cubes (discussed on the read_isurf command doc page) from a tomographic image of a sample of
NASA FiberForm (TM) material, used as a heat shield material on spacecraft. Particles flow from top to bottom.

269

https://sparta.github.io

The specified group-ID must be the name of a grid cell group, as defined by the group grid command, which
contains a set of grid cells, all of which are the same size, and which comprise a contiguous 3d array. It must be
the same as group-ID used with the read_isurf command, which specifies its Nx by Ny by Nz extent. See the
read_isurf command for more details. This command reads the initial values for grid cell corner points, which are
stored by this fix.

The specfied Nevery determines how often an ablation operation is performed. If Nevery = 0, ablation is never
performed. The grid cell corner point values and the surface elements they induce will remain static for the
duration of subsequent simulations.

The specified scale is a pre-factor on the specified source of ablation strength. It converts the per grid cell
numeric quantities produced by the source (which may have associated units) to a unitless decrement value for the
grid cell corner points, which range from 0 to 255 inclusive. A value of 255 represents solid material and a value
of 0 is void (flow volume for particles). Values in between represent partially ablated material.

The source can be specified as a per grid cell quantity calculated by a compute, fix, or variable. For example,
compute isurf/grid can tally the number of collisions of particles with the surfaces in each grid cell or the amount
of energy transferred to the surface by the collisions. Or compute react/isurf/grid can tally the number of reactions
that remove a species from the surface.

An example of a fix which be used as a source is fix ave/grid which could use either of those per grid cell
computes as input. It could thus accumulate and time average the same quantities over many timesteps. In that

270

case the scale factor should account for applying a time-averaged quantity at an interval of N steps.

Finally, a grid-style variable can be be used as a source. This could perform a calculation on other per grid cell
quantities. For example, it could add and subtract columns from the compute or fix just mentioned to tally
adsorption versus desorption reactions and thus infer net mass removed from the surface.

For debugging purposes, the source can also be specified as random with an additional integer maxrandom value
also specified. In this case, the scale factor should be floating point value between 0.0 and 1.0. Each time ablation
is performed, two random numbers are generated for each grid cell. The first is a random value between 0.0 and
1.0. The second is a random integer between 1 and maxrandom. If the first random # < scale, then the second
random integer is the decrement value for the cell. Thus scale is effectively the fraction of grid cells whose corner
point values are decremented.

For basic testing of new ablation capabilities or geometries, the source can be specified as uniform. Any cell
which contains part of the gas and the surface is decremented by maxrandom.

See the explanation for the optional mindist and multiple keywords below.

Here is an example of commands that will couple ablation to surface reaction statistics to modulate ablation of a
set of implicit surfaces. These lines are taken from the examples/ablation/in.ablation.3d.reactions input script:

surf_collide 1 diffuse 300.0 1.0
surf_react 2 prob air.surf

compute 10 react/isurf/grid all 2
fix 10 ave/grid all 1 100 100 c_10[*]
dump 10 grid all 100 tmp.grid id c_10[1]

global surfs implicit
fix ablate ablate all 100 2.0 c_10[1] # could be f_10
read_isurf all 20 20 20 binary.21x21x21 99.5 ablate

surf_modify all collide 1 react 2

The order of these commands matter, so here is the explanation.

The surf_modify command must come after the read_isurf command, because surfaces must exist before
assigning collision and reaction models to them. The fix ablate command must come before the read_isurf
command, since it uses the ID of the fix ablate command as an argument to create implicit surfaces. The fix ablate
command takes a compute or fix as an argument, in this case the ID of the compute react/isurf/grid command.
This is to specify what calculation drives the ablation. In this case, it is the compute react/isurf/grid command (or
could be the fix ave/grid command) which tallies counts of surface reactions for implicit triangles in each grid
cell. The compute react/isurf/grid react/isurf/grid command requires the ID of a surface reaction model, so that it
knows the list of possible reactions to tally. In this case the reaction is set by the surf_react command, which must
therefore comes near the beginning of this list of commands.

As explained on the read_isurf doc page, the marching cubes (3d) or marching squares (2d) algorithm is used to
convert a set of grid corner point values to a set of implicit triangles in each grid cell which represent the current
surface of porous material which is undergoing dynamic ablation. This uses a threshold value, defined by the
read_isurf command, to set the boundary between solid material and void.

The ablation operation decrements the corner point values of each grid cell containing porous material. The
marching cubes or squares algorithm is re-invoked on the new corner point values to create a new set of implicit
surfaces, which effectively recess due to the decrement produced by the ablative source factor.

271

The manner in which the per-grid source decrement value is applied to the grid corner points is as follows. Note
that each grid cell has 4 (2d) or 8 (3d) corner point values. Except at the boundary of the 2d of 3d array of grid
cells containing porous materials, each corner point is similarly shared by 4 (2d) or 8 (3d) grid cells.

Within each grid cell, the decrement value is subtracted from the smallest corner point value. Except that a corner
point value cannot become smaller than 0.0. If this would occur, only a portion of the decrement is used to set the
corner point to 0.0; the remainder is applid to the next smallest corner point value. And so forth on successive
corner points until all of the decrement is used.

The amount of decrement applied to each corner point is next shared between all the grid cells (4 or 8) sharing
each corner point value. The sum of those decrements is subtracted from the corner point, except that it's final
value is set no smaller than 0.0. All the copies of each corner point value are now identical.

One issue with the marching cubes or squares algorithm is that it can produce very tiny triangles (3d) or line
segments (2d) when grid corner point values are equal to or very close to the threshold value.

To avoid this problem, the default behavior of this fix is to use an "epsilon method" to adjust a grid corner point
value. If the corner point has a value X where threshold-epsilon < X < threshold+epsilon, then it is reset to a value
= threshold-epsilon. As explained above, the threshold value is defined by the read_isurf command. Epsilon is set
within the code to be 1.0e-4. Note that this is on the scale of corner point values which can range from 0 to 255.

An alternate method for avoiding tiny triangles or line segments is to use the mindist keyword. For 3d models, its
fraction value sets the minimum fractional distance between any vertex of a triangle generated by the marching
cubes algorithm and any of the 8 corner points of the grid cell. For 2d models, it sets the minimum fractional
distance between any end point of a line segment generated by the marching squares algorithm and any of the 4
corner points of the grid cell. Fractional means relative to the grid cell edge length. I.e. if the grid cell size is 2.0
and fraction is 0.1, then the fractional distance is 0.2.

The specified fraction value must be a number >= 0.0 and < 0.5. If the value is less than 1.0e-4, then it is treated
as if the value were 0.0 (the default), and the epsilon method described above is used.

For values of fraction >= 1.0e-4, the "isosurface stuffing" method proposed by Labelle and Shewchuk (Labelle07)
is used. The idea is as follows:

If a generated triangle vertex or line segment end point could be geometrically closer to a grid corner point than
fraction, the vertex location is adjusted to ensure the vertex/end-point will always be at least a distance fraction
from the corner point and remains between the same inside and outside grid corner points. The grid point values
themselves are not changed. There are two cases to consider.

(1) The vertex is too close to a inside grid corner point. In this case, the vertex location is shifted towards the
outside corner point such that the relative distance from the vertex to the inside corner point is at least mindist

(2) Conversely, if the vertex is too close to the outside grid corner point, the vetex location is shifted towards the
inside corner point such that the relative distance from the vertex to the outside corner point is at least mindist

272

The multiple option allows a multipoint decrement (Hong24) to be used. In a cell, three types of corners are
identified: inside, outside or interface. An inside point is a point inside the surface (its values is greater than the
specified threshold). An outside point is a point that is outside the surface and all corner points adjacent to that
corner point within the cell are also outside the surface. An interface is a point outside the surface but one of its
neighboring points is inside. Given a cell decrement, the multipoint decrement distributes that cell decrement
evenly to each interface point. In the case the interface point becomes negative, the negative value is evenly
distributed to each of the adjoining inside points. The multipoint decrement may also be used with the
multivalues.

The multipoint decrement is conceptually different than the single point decrement. A single point decrement
visits each corner point one at a time and reduces the minimum corner point value found. The multipoint
decrement reduces all interface points. A distributed decrement is advantageous when one is interested in
preserving cell level features. In the above example, a single cell is ablated (indicated by a red arrow). With a
single point decrement, only one corner point is updated and only the left side of the affected cell ablates. With
the multipoint decrement, two corner points are reduced and the entire surface contained within the ablated cell
recedes.

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global scalar and a global vector of length 2. The global scalar is the current sum of unique
corner point values across the entire grid (not counting duplicate values). This sum assumes that corner point
values are 0.0 on the boundary of the 2d or 3d array of grid cells containing implicit surface elements.

273

The 2 vector values are the (1) sum of decrement values for each grid cell in the most recent ablation operation,
and (2) the # of particles deleted during the most recent ablation operation that ended up "inside" the newly
ablated surface. The latter quantity should be 0. A non-zero value indicates a corner case in the marching cubes or
marching squares algorithm the developers still need to address.

These values can be accessed by any command that uses global values from a fix as input. See Section 6.4 for an
overview of SPARTA output options.

The scalar and vector values are unitless.

Restrictions:

This fix can only be used in simulations that define implicit surfaces.

Related commands:

read isurf

Default:

The default for the mindist keyword = 0.0, i.e. the epsilon method is used. The default for the multiple keyword =
no.

(Labelle07) F. Labelle, and J. R.. Shewchuk, "Isosurface stuffing: Fast Tetrahedral Meshes with Good Dihedral
Angles," SIGGRAPH (2007).

(Hong24) A. Y. K. Hong, M. A. Gallis, S. G Moore, and S. J. Plimpton, "Towards physically realistic ablation
modeling in direct simulation Monte Carlo," Physics of Fluids (2024).

274

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix adapt command

fix adapt/kk command

Syntax:

fix ID adapt Nfreq args ...

ID is documented in fix command•
adapt = style name of this fix command•
Nfreq = perform grid adaptation every this many steps•
args = all remaining args are identical to those defined for the adapt_grid command•

Examples:

fix 1 adapt 1000 all refine particle 10 50
fix 1 adapt 1000 all coarsen particle 10 50
fix 1 adapt 500 subset refine coarsen particle 10 50
fix 1 adapt 10000 all refine surf 0.15 iterate 1 dir 1 0 0
fix 10 adapt 1000 all refine coarsen value c_1[1] 5.0 10.0 iterate 2

Description:

This command performs on-the-fly adapatation of grid cells as a simulation runs, either by refinement or
coarsening or both. Grid adaptation can also be performed before or between simulations by using the adapt_grid
command.

Refinement means splitting one child cell into multiple new child cells; the original child cell becomes a parent
cell. Coarsening means combining all the child cells of a parent cell, so that the child cells are deleted and the
parent cell becomes a single new child cell. See Section howto 4.8 for a description of the hierarchical grid used
by SPARTA and a defintion of child and parent cells.

Grid adaptation can be useful for adjusting the grid cell sizes to the current particle density distribution, or
mean-free-path of particles, or to other simulation attributes such as the presence of surface elements. A
well-adapted grid can improve accuracy of the simulation and/or reduce a simulation's computational cost.

Adaptation is performed by this command once every Nfreq timesteps.

All of the command arguments which appear after Nfreq, which determine how adapation is done for both
refinement and coarsening, are exactly the same as for the adapt_grid command.

This includes a group-ID parameter which can be used to limit adaptation to a subset of current grid cells. See the
adapt_grid command doc page for details.

The one exception is that the iterate keyword cannot be used with the fix adapt command. Only a single iteration
of the action1 and action2 parameters (described on the adapt_grid doc page) can be performed each time grid
adaptation is performed.

Note that if you want the grid partitioning (and their particles) to be rebalanced across processors after grid
adaptation, you can use the fix_balance command. If you set the Nfreq setting for this command and the
fix_balance command to the same value, then both operations will occur on the same timesteps. However, the fix

275

https://sparta.github.io

balance command needs to appear in the input script after the fix adapt command, if you want balancing to occur
after adaptation (whether the Nfreq values are the same or not).

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global scalar which is a flag for whether any grid cells were adapted on the last timestep it
was invoked. The value of the flag is 1 if any cells were refined or coarsened, else it is 0.

This fix also computes a global vector of length 2. The first value is the number of cells which were refined. The
second is the number which were coarsened. Both on the last timestep the fix was invoked.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

Currently, if there are custom attributes defined for grid cells, grid adaptation does not set new values for new grid
cells created when either refinement or coarsening takes place. The new cells will have zero values for their
attributes. This is because there is no simple way to determine how new attribute values should be computed. This
may be changed in the future.

Related commands:

adapt_grid, fix balance

Default: none

276

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix ambipolar command

fix ambipolar command/kk

Syntax:

fix ID ambipolar especies ion1 ion2 ...

ID is documented in fix command•
ambipolar = style name of this fix command•
especies = species ID for ambipolar electrons•
ion1,ion2,... = species IDs for one or more ambipolar ions•

Examples:

fix 1 ambipolar e N+ O+ NO+

Description:

Enable the ambipolar approximation to be used in a simulation. The ambipolar approximation is a
computationally efficient way to model low-density plasmas which contain positively-charged ions and
negatively-charged electrons. In this model, electrons are not free particles which move independently. This
would require a simulation with a very small timestep due to electon's small mass and high speed (1000x that of
an ion or neutral particle).

Instead each ambipolar electron is assumed to stay "close" to its parent ion, so that the plasma gas appears
macroscopically neutral. Each pair of particles thus moves together through the simulation domain, as if they
were a single particle, which is how they are stored within SPARTA. This means a normal timestep can be used.

An overview of how to run simulations with the ambipolar approximation is given in the Section 6.11. This
includes gas-phase collisions and chemistry as well as surface chemistry when particles collide with surface
elements or the global boundary of the simulation box. The section also lists all the commands that can be used in
an input script to invoke various options associated with the ambipolar approximation. All of them depend on this
fix ambipolar command being defined.

This command defines especies which is the species ID associated with the ambipolar electrons. It also specifies
one or more species IDs as ion1, ion2, etc for ambipolar ions. SPARTA checks that the especies has a negative
charge (as read in by the species command), and the ions have positive charges. An error is flagged if that is not
the case.

Internally, this fix defines two custom particle attributes. The first is named "ionambi" and is an integer vector
(one integer per particle). It stores a value of 1 for ambipolar ions, or 0 otherwise. The second is named "velambi"
and is a floating-point array (3 values per particle). It stores the velocity of the ambipolar electron associated with
the ambipolar ion if it exists, or zeroes otherwise.

Restart, output info:

No information about this fix is written to binary restart files.

277

https://sparta.github.io

However, the values of the two custom particle attributes defined by this fix are written to the restart file. Namely
the integer value "ionambi" and floating-point velocity values "velambi" for each particle. As explained on the
read_restart doc page these values will be re-assigned to particles when a restart file is read. If a new fix
ambipolar command is specified in the restart script before the first run command is used, then the ambipolar
model will continue to be used in the continued run.

No global or per-particle or per-grid quantities are stored by this fix for access by various output commands.

However, the two custom per-particle attributes defined by this fix can be accessed by the dump particle
command, as p_ionambi and p_velambi. That means those per-particle values can be written to particle dump
files.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions: none

Related commands:

collide_modify ambipolar yes

Default: none

278

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix ave/grid command

fix ave/grid/kk command

Syntax:

fix ID ave/grid group-ID Nevery Nrepeat Nfreq value1 value2 ... keyword args ...

ID is documented in fix command•
ave/grid = style name of this fix command•
group-ID = group ID for which grid cells to perform calculation on•
Nevery = use input values every this many timesteps•
Nrepeat = # of times to use input values for calculating averages•
Nfreq = calculate averages every this many timesteps zero or more input values can be listed•
value = c_ID, c_ID[N], f_ID, f_ID[N], v_name, g_name, g_name[N]

 c_ID = per-grid vector calculated by a compute with ID
 c_ID[N] = Nth column of per-grid array calculated by a compute with ID, N can include wildcard (see below)
 f_ID = per-grid vector calculated by a fix with ID
 f_ID[N] = Nth column of per-grid array calculated by a fix with ID, N can include wildcard (see below)
 v_name = per-grid vector calculated by a grid-style variable with name
 g_name = custom per-grid vector with name
 g_name[N] = Nth column of per-grid custom array with name, N can include wildcard (see below)

•

zero or more keyword/arg pairs may be appended

keyword = ave
ave args = one or running

 one = output a new average value every Nfreq steps
 running = accumulate average continuously

•

Examples:

fix 1 ave/grid all 10 20 1000 c_mine
fix 1 ave/grid all 1 100 100 c_2[1] ave running
fix 1 ave/grid all 1 100 100 c_2[*] ave running
fix 1 ave/grid section1 5 20 100 v_myEng

These commands will dump averages for each species and each grid cell to a file every 1000 steps:

compute 1 grid species n u v w usq vsq wsq
fix 1 ave/grid 10 100 1000 c_1[*]
dump 1 grid all 1000 tmp.grid id f_1[*]

Description:

Use one or more per-grid vectors as inputs every few timesteps, and average by grid cell over longer timescales,
applying appropriate normalization factors. The resulting per grid cell averages can be used by other output
commands such as the dump grid command. Only grid cells in the grid group specified by group-ID are included
in the averaging. See the group grid command for info on how grid cells can be assigned to grid groups.

Each input value can be the result of a compute or fix or grid-style variable. The compute or fix must produce a
per-grid vector or array, not a global or per-particle or per-surf quantity. If you wish to time-average global
quantities from a compute, fix, or variable, then see the fix ave/time command. To time-average per-surf

279

https://sparta.github.io

quantities, see the fix ave/surf command.

Each per-grid value of each input vector is averaged independently.

Computes that produce per-grid vectors or arrays are those which have the word grid in their style name. See the
doc pages for individual fixes to determine which ones produce per-grid vectors or arrays.

Note that for values from a compute or fix or custom attribute, the bracketed index can be specified using a
wildcard asterisk with the index to effectively specify multiple values. This takes the form "*" or "*n" or "n*" or
"m*n". If N = the size of the vector (for mode = scalar) or the number of columns in the array (for mode = vector),
then an asterisk with no numeric values means all indices from 1 to N. A leading asterisk means all indices from 1
to n (inclusive). A trailing asterisk means all indices from n to N (inclusive). A middle asterisk means all indices
from m to n (inclusive).

Using a wildcard is the same as if the individual columns of the array had been listed one by one. E.g. these 2 fix
ave/grid commands are equivalent, since the compute grid command creates a per-grid array with 3 columns:

compute myGrid all all u v w
fix 1 ave/grid all 10 20 1000 c_myGrid[*]
fix 1 ave/grid all 10 20 1000 c_myGrid[1] c_myGrid[2] c_myGrid[3]

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the average. The final averaged quantities are generated on timesteps that are a multiple of Nfreq.
The average is over Nrepeat quantities, computed in the preceding portion of the simulation every Nevery
timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero even if Nrepeat is 1. Also, the
timesteps contributing to the average value cannot overlap, i.e. Nfreq > (Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on timesteps 90,92,94,96,98,100 will be used
to compute the final average on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on timestep 200,
etc.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If no
bracketed term is appended, the compute must calculate a per-grid vector. If c_ID[N] is used, the compute must
calculate a per-grud array with M columns and N must be in the range from 1-M, which will use the Nth column
of the M-column per-grid array. See the discussion above for how N can be specified with a wildcard asterisk to
effectively specify multiple values.

Users can also write code for their own compute styles and add them to SPARTA.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If no
bracketed term is appended, the fix must calculates a per-grid vector. If f_ID[N] is used, the fix must calculate a
per-grid array with M columns and N must be in the range from 1-M, which will use the Nth column of the
M-column per-grid array. See the discussion above for how N can be specified with a wildcard asterisk to
effectively specify multiple values.

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery, else
an error will result. Users can also write code for their own fix styles and add them to SPARTA.

If a value begins with "v_", a variable name must follow which has been previously defined in the input script.
Only grid-style variables can be referenced. See the variable command for details. Note that grid-style variables
define a formula which can reference stats_style keywords, or they can invoke other computes, fixes, or variables
when they are evaluated, so this is a very general means of specifying quantities to time average.

280

If a value begins with "g_", the name of a custom per-grid vector or array must follow. Custom attributes can
store either a single or multiple values per grid cell. See Section 6.17 for more discussion of custom attributes and
command that define them. For example, the read_grid and surf_react implicit commands can define per-grid
attributes. (The surf/react implicit command has not yet been released in public SPARTA).

If g_name is used as a value, the custom attribute must be a vector. If g_name[N] is used, the custom attribute
must be an array, and N must be in the range from 1-M for an M-column array. See the discussion above for how
N can be specified with a wildcard asterisk to effectively specify multiple values.

For averaging of a value that comes from a compute or fix, normalization is performed as follows. Note that no
normalization is performed on a value produced by a grid-style variable.

If the compute or fix is summing over particles in a grid cell to calculate a per-grid quantity (e.g. energy or
temperature), this takes the form of a numerator divided by a denominator. For example, see the formulas
discussed on the compute grid doc page, where the denominator is 1 (for keyword n), or the number of particles
(ke, mass, temp), or the sum of particle masses (u, usq, etc). When this command averages over a series of
timesteps, the numerator and denominator are summed separately. This means the numerator/denominator
division only takes place when this fix produces output, every Nfreq timesteps.

For example, say the Nfreq output is over 2 timesteps, and the value produced by compute grid mass is being
averaged. Say a grid cell has 10 particles on the 1st timestep with a numerator value of 10.0, and 100 particles on
the 2nd timestep with a numerator value of 50.0. The output of this fix will be (10+50) / (10+100) = 0.54, not
((10/10) + (50/100)) / 2 = 0.75.

Additional optional keywords also affect the operation of this fix.

The ave keyword determines what happens to the accumulation of statistics every Nfreq timesteps.

If the ave setting is one, then the values produced on timesteps that are multiples of Nfreq are independent of each
other. Normalization as described above is performed, and all tallies are zeroed before accumulating over the next
Nfreq steps.

If the ave setting is running, then tallies are never zeroed. Thus the output at any Nfreq timestep is normalized
over all previously accumulated samples since the fix was defined. The tallies can only be zeroed by deleting the
fix via the unfix command, or by re-defining the fix, or by re-specifying it.

Restart, output info:

No information about this fix is written to binary restart files.

This fix produces a per-grid vector or array which can be accessed by various output commands. A vector is
produced if only a single quantity is averaged by this fix. If two or more quantities are averaged, then an array of
values is produced, where the number of columns is the number of quantities averaged. The per-grid values can
only be accessed on timesteps that are multiples of Nfreq since that is when averaging is performed.

This fix performs averaging for all child grid cells in the simulation, which includes unsplit, split, and sub cells.
Section 4.8 of the manual gives details of how SPARTA defines child, unsplit, split, and sub cells.

Grid cells not in the specified group-ID will output zeroes for all their values.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section

281

of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

If one of the specified values is a compute which tallies information on collisions between particles and implicit
surface element within each grid cell, then all the values must be for compute(s) which do this. I.e. you cannot
mix computes which operate on implicit surfaces with other kinds of per-grid values in the same fix ave/grid
command.

Examples of computes which tally particle/implicit surface element collision info within each grid cell are
compute isurf/grid and compute react/isurf/grid.

If performing on-the-fly grid adaptation every N timesteps, using the fix adapt command, this fix cannot
time-average across time windows > N steps, since the grid may change. This means Nfreq cannot be > N, and
keyword ave = running is not allowed.

Related commands:

compute, fix ave/time

Default:

The option defaults are ave = one.

282

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix ave/histo command

fix ave/histo/kk command

fix ave/histo/weight command

fix ave/histo/weight/kk command

Syntax:

fix ID style Nevery Nrepeat Nfreq lo hi Nbin value1 value2 ... keyword args ...

ID is documented in fix command•
style = ave/histo or ave/histo/weight = style name of this fix command•
Nevery = use input values every this many timesteps•
Nrepeat = # of times to use input values for calculating histogram•
Nfreq = calculate histogram every this many timesteps•
lo,hi = lo/hi bounds within which to histogram•
Nbin = # of histogram bins•
one or more input values can be listed•
value = x, y, z, vx, vy, vz, fx, fy, fz, c_ID, c_ID[N], f_ID, f_ID[N], v_name

 x,y,z,vx,vy,vz = particle attribute (position, velocity component)
 c_ID = scalar or vector calculated by a compute with ID
 c_ID[I] = Ith component of vector or Ith column of array calculated by a compute with ID, I can include wildcard (see below)
 f_ID = scalar or vector calculated by a fix with ID
 f_ID[I] = Ith component of vector or Ith column of array calculated by a fix with ID, I can include wildcard (see below)
 v_name = value(s) calculated by an equal-style or particle-style or grid-style variable with name

•

zero or more keyword/arg pairs may be appended•
keyword = mode or file or region or mix or group or ave or start or beyond or overwrite or title1 or title2
or title3

mode arg = scalar or vector
 scalar = all input values are scalars
 vector = all input values are vectors

file arg = filename
 filename = name of file to output histogram(s) to

region arg = region-ID for particle inclusion
mix arg = mixture-ID for particle inclusion
group arg = group-ID for grid cell inclusion
ave args = one or running or window

 one = output a new average value every Nfreq steps
 running = output cumulative average of all previous Nfreq steps
 window M = output average of M most recent Nfreq steps

start args = Nstart
 Nstart = start averaging on this timestep

beyond arg = ignore or end or extra
 ignore = ignore values outside histogram lo/hi bounds
 end = count values outside histogram lo/hi bounds in end bins
 extra = create 2 extra bins for value outside histogram lo/hi bounds

overwrite arg = none = overwrite output file with only latest output
title1 arg = string

 string = text to print as 1st line of output file
title2 arg = string

 string = text to print as 2nd line of output file

•

283

https://sparta.github.io

title3 arg = string
 string = text to print as 3rd line of output file, only for vector mode

Examples:

fix 1 ave/histo 100 5 1000 0.5 1.5 50 c_myGrid[*] file temp.histo ave running
fix 1 ave/histo 100 5 1000 0 5 100 c_kePart "My output values"
fix 1 ave/histo/weight 1 100 1000 -2.0 2.0 18 vx vy ave running beyond extra

Description:

Use one or more values as inputs every few timesteps to create a single histogram. The histogram can then be
averaged over longer timescales. The resulting histogram can be used by other output commands, and can also be
written to a file. The fix ave/histo/weight command has identical syntax to fix ave/histo, except that exactly two
values must be specified. See details below.

A histogram is simply a count of the number of values that fall within a histogram bin. Nbins are defined, with
even spacing between lo and hi. Values that fall outside the lo/hi bounds can be treated in different ways; see the
discussion of the beyond keyword below.

Each input value can be a particle attribute (position, velocity), or can be the result of a compute or fix that
produces global or per-particle or per-grid quantities, or the evaluation of an equal-style or particle-style or
grid-style variable. The set of input values can be either all global, all per-particle, or all per-grid quantities.
Inputs of different kinds (e.g. global and per-particle) cannot be mixed. Particle attributes are per-particle vector
values. See the doc page for individual "compute" and "fix" commands to see what kinds of quantities they
generate.

The input values must either be all scalars or all vectors (or arrays), depending on the setting of the mode
keyword.

Note that the output of this command is a single histogram for all input values combined together, not one
histogram per input value. See below for details on the format of the output of this fix.

If mode = scalar, then the input values must be scalars, or vectors with a bracketed term appended, indicating the
Ith value of the vector is used.

If mode = vector, then the input values must be vectors, or arrays with a bracketed term appended, indicating the
Ith column of the array is used.

Note that for values from a compute or fix, the bracketed index I can be specified using a wildcard asterisk with
the index to effectively specify multiple values. This takes the form "*" or "*n" or "n*" or "m*n". If N = the size
of the vector (for mode = scalar) or the number of columns in the array (for mode = vector), then an asterisk with
no numeric values means all indices from 1 to N. A leading asterisk means all indices from 1 to n (inclusive). A
trailing asterisk means all indices from n to N (inclusive). A middle asterisk means all indices from m to n
(inclusive).

Using a wildcard is the same as if the individual elements of the vector or columns of the array had been listed
one by one. E.g. these 2 fix ave/histo commands are equivalent, since the compute grid command creates a
per-grid array with 3 columns:

compute myGrid grid all all u v w
fix 1 ave/histo 100 1 100 c_myGrid file tmp1.grid mode vector
fix 2 ave/histo 100 1 100 c_myGrid[1] c_myGrid[2] c_myGrid[3] file tmp2.grid mode vector

284

If the fix ave/histo/weight command is used, exactly two values must be specified. If the values are vectors, they
must be the same length. The first value (a scalar or vector) is what is histogrammed into bins, in the same manner
the fix ave/histo command operates. The second value (a scalar or vector) is used as a "weight". This means that
instead of each value tallying a "1" to its bin, the corresponding weight is tallied. E.g. the Nth entry in the first
vector tallies the Nth entry (weight) in the second vector.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the histogram. The final histogram is generated on timesteps that are multiple of Nfreq. It is
averaged over Nrepeat histograms, computed in the preceding portion of the simulation every Nevery timesteps.
Nfreq must be a multiple of Nevery and Nevery must be non-zero even if Nrepeat is 1. Also, the timesteps
contributing to the histogram value cannot overlap, i.e. Nrepeat*Nevery can not exceed Nfreq.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then input values on timesteps 90,92,94,96,98,100 will be
used to compute the final histogram on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
timestep 200, etc. If Nrepeat=1 and Nfreq = 100, then no time averaging of the histogram is done; a histogram is
simply generated on timesteps 100,200,etc.

The particle attribute values (x,y,z,vx,vy,vz) are self-explanatory.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
mode = scalar, then if no bracketed term is appended, the global scalar calculated by the compute is used. If a
bracketed term is appended, the Ith element of the global vector calculated by the compute is used. If mode =
vector, then if no bracketed term is appended, the global or per-atom or local vector calculated by the compute is
used. If a bracketed term is appended, the Ith column of the global or per-particle or per-grid array calculated by
the compute is used. See the discussion above for how I can be specified with a wildcard asterisk to effectively
specify multiple values.

Note that there is a compute reduce command which can sum per-particle or per-grid or per-surf quantities into a
global scalar or vector which can thus be accessed by fix ave/histo. Users can also write code for their own
compute styles and add them to SPARTA.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If mode =
scalar, then if no bracketed term is appended, the global scalar calculated by the fix is used. If a bracketed term is
appended, the Ith element of the global vector calculated by the fix is used. If mode = vector, then if no bracketed
term is appended, the global or per-atom or local vector calculated by the fix is used. If a bracketed term is
appended, the Ith column of the global or per-particle or per-grid array calculated by the fix is used. See the
discussion above for how I can be specified with a wildcard asterisk to effectively specify multiple values.

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery, else
an error will result. Users can also write code for their own fix styles and add them to SPARTA.

If a value begins with "v_", a variable name must follow which has been previously defined in the input script. If
mode = scalar, then only equal-style variables can be used. If mode = vector, then only particle-style or grid-style
variables can be used, which produce per-particle per-grid vectors respectively. See the variable command for
details.

Note that variables of style equal, particle, and grid define a formula which can reference individual particle
properties or stats output keywords, or they can invoke other computes, fixes, or variables when they are
evaluated, so this is a very general means of specifying quantities to histogram.

Additional optional keywords also affect the operation of this fix.

285

If the mode keyword is set to scalar, then all input values must be global scalars, or elements of global vectors. If
the mode keyword is set to vector, then all input values must be global or per-particle or per-grid vectors, or
columns of global or per-particle or per-grid arrays.

The file keyword allows a filename to be specified. Every Nfreq steps, one histogram is written to the file. This
includes a leading line that contains the timestep, number of bins, the total count of values contributing to the
histogram, the count of values that were not histogrammed (see the beyond keyword), the minimum value
encountered, and the maximum value encountered. The min/max values include values that were not
histogrammed. Following the leading line, one line per bin is written into the file. Each line contains the bin #, the
coordinate for the center of the bin (between lo and hi), the count of values in the bin, and the normalized count.
The normalized count is the bin count divided by the total count (not including values not histogrammed), so that
the normalized values sum to 1.0 across all bins.

The region, mix, and group keywords limit which particles or grid cells are included in the histogramming.

The region keyword only applies to per-particle histogramming. Only particles in the specified region-ID are
included in the histogram. See the region command for details of how geometric regions are defined.

The mix keyword only applies to per-particle histogramming. Only particles whose species are in the specified
mixture-ID are included in the histogram, which allows for only a subset of species to be included. See the
mixture command for details of how mixtures are defined.

The group keyword only applies to per-grid cell histogramming. Only grid cells in the grid group specified by
group-ID are included in the histogram. See the grid group command for details of how grid groups are defined.

The ave keyword determines how the histogram produced every Nfreq steps are averaged with histograms
produced on previous steps that were multiples of Nfreq, before they are accessed by another output command or
written to a file.

If the ave setting is one, then the histograms produced on timesteps that are multiples of Nfreq are independent of
each other; they are output as-is without further averaging.

If the ave setting is running, then the histograms produced on timesteps that are multiples of Nfreq are summed
and averaged in a cumulative sense before being output. Each bin value in the histogram is thus the average of the
bin value produced on that timestep with all preceding values for the same bin. This running average begins when
the fix is defined; it can only be restarted by deleting the fix via the unfix command, or by re-defining the fix by
re-specifying it.

If the ave setting is window, then the histograms produced on timesteps that are multiples of Nfreq are summed
within a moving "window" of time, so that the last M histograms are used to produce the output. E.g. if M = 3 and
Nfreq = 1000, then the output on step 10000 will be the combined histogram of the individual histograms on steps
8000,9000,10000. Outputs on early steps will be sums over less than M histograms if they are not available.

The start keyword specifies what timestep histogramming will begin on. The default is step 0. Often input values
can be 0.0 at time 0, so setting start to a larger value can avoid including a 0.0 in a running or windowed
histogram.

The beyond keyword determines how input values that fall outside the lo to hi bounds are treated. Values such
that lo <= value <= hi are assigned to one bin. Values on a bin boundary are assigned to the lower of the 2 bins. If
beyond is set to ignore then values < lo and values > hi are ignored, i.e. they are not binned. If beyond is set to end
then values < lo are counted in the first bin and values > hi are counted in the last bin. If beyond is set to extend
then two extra bins are created, so that there are Nbins+2 total bins. Values < lo are counted in the first bin and

286

values > hi are counted in the last bin (Nbins+1). Values between lo and hi (inclusive) are counted in bins 2 thru
Nbins+1. The "coordinate" stored and printed for these two extra bins is lo and hi.

The overwrite keyword will continuously overwrite the output file with the latest output, so that it only contains
one timestep worth of output. This option can only be used with the ave running setting.

The title1 and title2 and title3 keywords allow specification of the strings that will be printed as the first 3 lines of
the output file, assuming the file keyword was used. SPARTA uses default values for each of these, so they do not
need to be specified.

By default, these header lines are as follows:

Histogram for fix ID
TimeStep Number-of-bins Total-counts Missing-counts Min-value Max-value
Bin Coord Count Count/Total

In the first line, ID is replaced with the fix-ID. The second line describes the six values that are printed at the first
of each section of output. The third describes the 4 values printed for each bin in the histogram.

Restart, output info:

No information about this fix is written to binary restart files.

This fix produces a global vector and global array which can be accessed by various output commands. The
values can only be accessed on timesteps that are multiples of Nfreq since that is when a histogram is generated.
The global vector has 4 values:

1 = total counts in the histogram•
2 = values that were not histogrammed (see beyond keyword)•
3 = min value of all input values, including ones not histogrammed•
4 = max value of all input values, including ones not histogrammed•

The global array has # of rows = Nbins and # of columns = 3. The first column has the bin coordinate, the 2nd
column has the count of values in that histogram bin, and the 3rd column has the bin count divided by the total
count (not including missing counts), so that the values in the 3rd column sum to 1.0.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions: none

287

Related commands:

compute, fix ave/time, variable

Default:

The option defaults are mode = scalar, ave = one, start = 0, no file output, no region/mixture/group restriction on
inclusion of particles or grid cells, beyond = ignore, and title 1,2,3 = strings as described above.

288

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix ave/surf command

Syntax:

fix ID ave/surf group-ID Nevery Nrepeat Nfreq value1 value2 ... keyword args ...

ID is documented in fix command•
ave/surf = style name of this fix command•
group-ID = group ID for which surface elements to perform calculation on•
Nevery = use input values every this many timesteps•
Nrepeat = # of times to use input values for calculating averages•
Nfreq = calculate averages every this many timesteps zero or more input values can be listed•
value = c_ID, c_ID[N], f_ID, f_ID[N], v_name, s_name, s_name[N]

 c_ID = per-surf vector calculated by a compute with ID
 c_ID[N] = Nth column of per-surf array calculated by a compute with ID, N can include wildcard (see below)
 f_ID = per-surf vector calculated by a fix with ID
 f_ID[N] = Nth column of per-surf array calculated by a fix with ID, N can include wildcard (see below)
 v_name = per-surf vector calculated by a surf-style variable with name
 s_name = custom per-surf vector with name
 s_name[N] = Nth column of per-surf custom array with name, N can include wildcard (see below)

•

zero or more keyword/arg pairs may be appended

keyword = ave
ave args = one or running

 one = output a new average value every Nfreq steps
 running = accumulate average continuously

•

Examples:

fix 1 ave/surf all 1 100 100 c_surf ave running
fix 1 ave/surf leftcircle 10 20 1000 c_mine[2]
fix 1 ave/surf leftcircle 10 20 1000 c_mine[*]
fix 1 ave/surf all 5 20 100 v_myEng

These commands will dump time averages for each species and each surface element to a dump file every 1000
steps:

compute 1 surf all species n press shx shy shz
fix 1 ave/surf all 10 100 1000 c_1[*]
dump 1 surf all 1000 tmp.surf id f_1[*]

Description:

Use one or more per-surf vectors as inputs every few timesteps, and average them surface element by surface
element by over longer timescales, applying appropriate normalization factors. The resulting per-surf averages
can be used by other output commands such as the dump surf command. Only surface elements in the surface
group specified by group-ID are included in the averaging. See the group surf command for info on how surface
elements can be assigned to surface groups.

Each input value can be the result of a compute or fix or surf-style variable or a custom per-surf attribute.. The
compute or fix must produce a per-surf vector or array, not a global or per-particle or per-grid quantity. If you
wish to time-average global quantities from a compute or fix then see the fix ave/time command. To time-average

289

https://sparta.github.io

per-grid quantities, see the fix ave/grid command.

Each per-surf value of each input vector is averaged independently.

Computes that produce per-surf vectors or arrays are those which have the word surf in their style name. See the
doc pages for individual fixes to determine which ones produce per-surf vectors or arrays.

Note that for values from a compute or fix or custom attribute, the bracketed index can be specified using a
wildcard asterisk with the index to effectively specify multiple values. This takes the form "*" or "*n" or "n*" or
"m*n". If N = the size of the vector (for mode = scalar) or the number of columns in the array (for mode = vector),
then an asterisk with no numeric values means all indices from 1 to N. A leading asterisk means all indices from 1
to n (inclusive). A trailing asterisk means all indices from n to N (inclusive). A middle asterisk means all indices
from m to n (inclusive).

Using a wildcard is the same as if the individual columns of the array had been listed one by one. E.g. these 2 fix
ave/surf commands are equivalent, since the compute surf command creates a per-surf array with 4 columns:

compute mySurf all all n fx fy fz
fix 1 ave/surf all 10 20 1000 c_mySurf[*]
fix 1 ave/surf all 10 20 1000 c_mySurf[1] c_mySurf[2] &
 c_mySurf[3] c_mySurf[4]

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the average. The final averaged quantities are generated on timesteps that are a multiple of Nfreq.
The average is over Nrepeat quantities, computed in the preceding portion of the simulation every Nevery
timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero even if Nrepeat is 1. Also, the
timesteps contributing to the average value cannot overlap, i.e. Nfreq > (Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on timesteps 90,92,94,96,98,100 will be used
to compute the final average on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on timestep 200,
etc.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If no
bracketed term is appended, the compute must calculate a per-surf vector. If c_ID[N] is used, the compute must
calculate a per-surf array with M columns and N must be in the range from 1-M, which will use the Nth column
of the M-column per-surf array. See the discussion above for how N can be specified with a wildcard asterisk to
effectively specify multiple values.

Users can also write code for their own compute styles and add them to SPARTA.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If no
bracketed term is appended, the fix must calculates a per-surf vector. If f_ID[N] is used, the fix must calculate a
per-surf array with M columns and N must be in the range from 1-M, which will use the Nth column of the
M-column per-surf array. See the discussion above for how N can be specified with a wildcard asterisk to
effectively specify multiple values.

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery, else
an error will result. Users can also write code for their own fix styles and add them to SPARTA.

If a value begins with "v_", a variable name must follow which has been previously defined in the input script.
Only surf-style variables can be referenced. See the variable command for details. Note that surf-style variables
define a formula which can reference stats_style keywords, or they can invoke other computes, fixes, or variables
when they are evaluated, so this is a very general means of specifying quantities to time average.

290

If a value begins with "s_", the name of a custom per-surf vector or array must follow. Custom attributes can store
either a single or multiple values per surface element. See Section 6.17 for more discussion of custom attributes
and command that define them. For example, the read_surf, fix surf/temp, and surf_react adsorb commands can
define per-surf attributes.

If s_name is used as a value, the custom attribute must be a vector. If s_name[N] is used, the custom attribute
must be an array, and N must be in the range from 1-M for an M-column array. See the discussion above for how
N can be specified with a wildcard asterisk to effectively specify multiple values.

For averaging of a value that comes from a compute or fix, normalization is performed as follows. Note that no
normalization is performed on a value produced by a surf-style variable.

If the compute or fix is summing over particles to calculate a per-surf quantity (e.g. pressure or energy flux), this
takes the form of a numerator divided by a denominator. For example, see the formulas discussed on the compute
surf doc page, where the denominator is 1 (for keyword n), area times dt (timestep) for the other quantities (press,
shx, ke, etc). When this command averages over a series of timesteps, the numerator and denominator are
summed separately. This means the numerator/denominator division only takes place when this fix produces
output, every Nfreq timesteps.

Additional optional keywords also affect the operation of this fix.

The ave keyword determines what happens to the accumulation of statistics every Nfreq timesteps.

If the ave setting is one, then the values produced on timesteps that are multiples of Nfreq are independent of each
other. Normalization as described above is performed, and all tallies are zeroed before accumulating over the next
Nfreq steps.

If the ave setting is running, then tallies are never zeroed. Thus the output at any Nfreq timestep is normalized
over all previously accumulated samples since the fix was defined. The tallies can only be zeroed by deleting the
fix via the unfix command, or by re-defining the fix, or by re-specifying it.

Restart, output info:

No information about this fix is written to binary restart files.

This fix produces a per-surf vector or array which can be accessed by various output commands. A vector is
produced if only a single quantity is averaged by this fix. If two or more quantities are averaged, then an array of
values is produced, where the number of columns is the number of quantities averaged. The per-surf values can
only be accessed on timesteps that are multiples of Nfreq since that is when averaging is performed.

Surface elements not in the specified group-ID will output zeroes for all their values.

Restrictions:

If one of the specified values is a compute which tallies information about particle/surface element collisions, then
all the values must be for compute(s) which do this. I.e. you cannot mix tallying computes with other kinds of
values in the same fix ave/surf command.

Examples of computes which tally particle/surface element collision info are compute surf and compute
react/surf.

Related commands:

291

compute, fix ave/time

Default:

The option defaults are ave = one.

292

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix ave/time command

Syntax:

fix ID ave/time Nevery Nrepeat Nfreq value1 value2 ... keyword args ...

ID is documented in fix command•
ave/time = style name of this fix command•
Nevery = use input values every this many timesteps•
Nrepeat = # of times to use input values for calculating averages•
Nfreq = calculate averages every this many timesteps•
one or more input values can be listed•
value = c_ID, c_ID[N], f_ID, f_ID[N], v_name

 c_ID = global scalar or vector or array calculated by a compute with ID
 c_ID[I] = Ith component of global vector or Ith column of global array calculated by a compute with ID, I can include wildcard (see below)
 f_ID = global scalar or vector or array calculated by a fix with ID
 f_ID[I] = Ith component of global vector or Ith column of global array calculated by a fix with ID, I can include wildcard (see below)
 v_name = global value calculated by an equal-style variable with name

•

zero or more keyword/arg pairs may be appended•
keyword = mode or file or ave or start or off or title1 or title2 or title3

mode arg = scalar or vector
 scalar = all input values are global scalars
 vector = all input values are global vectors or global arrays

ave args = one or running or window M
 one = output a new average value every Nfreq steps
 running = output cummulative average of all previous Nfreq steps
 window M = output average of M most recent Nfreq steps

start args = Nstart
 Nstart = start averaging on this timestep

off arg = M = do not average this value
 M = value # from 1 to Nvalues

file arg = filename
 filename = name of file to output time averages to

title1 arg = string
 string = text to print as 1st line of output file

title2 arg = string
 string = text to print as 2nd line of output file

title3 arg = string
 string = text to print as 3rd line of output file, only for vector mode

•

Examples:

fix 1 ave/time 100 5 1000 c_myTemp c_thermo_temp file temp.profile
fix 1 ave/time 100 5 1000 c_myCount[2] c_myCount[3] ave window 20 &
 title1 "My output values"
fix 1 ave/time 100 5 1000 c_myCount[*] ave window 20
fix 1 ave/time 1 100 1000 f_indent f_indent[1] file temp.indent off 1

Description:

Use one or more global values as inputs every few timesteps, and average them over longer timescales. The
resulting averages can be used by other output commands such as stats_style custom, and can also be written to a
file. Note that if no time averaging is done, this command can be used as a convenient way to simply output one

293

https://sparta.github.io

or more global values to a file.

Each listed value can be the result of a compute or fix or the evaluation of an equal-style variable. In each case,
the compute, fix, or variable must produce a global quantity, not a per-grid or per-surf quantity. If you wish to
time-average those quantities, see the fix ave/grid and fix ave/surf commands.

Computes that produce global quantities are those which do not have the word particle or grid or surf in their
style name. Only a few fixes produce global quantities. See the doc pages for individual fixes for info on which
ones produce such values. Variables of style equal are the only ones that can be used with this fix. Variables of
style particle cannot be used, since they produce per-particle values.

The input values must either be all scalars or all vectors (or arrays), depending on the setting of the mode
keyword. In both cases, the averaging is performed independently on each input value. I.e. each input scalar is
averaged independently and each element of each input vector (or array) is averaged independently.

If mode = scalar, then the input values must be scalars, or vectors with a bracketed term appended, indicating the
Ith value of the vector is used.

If mode = vector, then the input values must be vectors, or arrays with a bracketed term appended, indicating the
Ith column of the array is used. All vectors must be the same length, which is the length of the vector or number
of rows in the array.

Note that for values from a compute or fix, the bracketed index I can be specified using a wildcard asterisk with
the index to effectively specify multiple values. This takes the form "*" or "*n" or "n*" or "m*n". If N = the size
of the vector (for mode = scalar) or the number of columns in the array (for mode = vector), then an asterisk with
no numeric values means all indices from 1 to N. A leading asterisk means all indices from 1 to n (inclusive). A
trailing asterisk means all indices from n to N (inclusive). A middle asterisk means all indices from m to n
(inclusive).

Using a wildcard is the same as if the individual elements of the vector or columns of the array had been listed
one by one. E.g. these 2 fix ave/time commands are equivalent, since the compute count command creates, in this
case, a global vector with 3 values.

compute 1 count Ar He O
fix 1 ave/time 100 1 100 c_1 file tmp.count
fix 1 ave/time 100 1 100 c_1[1] c_1[2] c_1[3] file tmp.count

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the average. The final averaged quantities are generated on timesteps that are a mlutiple of Nfreq.
The average is over Nrepeat quantities, computed in the preceding portion of the simulation every Nevery
timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero even if Nrepeat is 1. Also, the
timesteps contributing to the average value cannot overlap, i.e. Nfreq > (Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on timesteps 90,92,94,96,98,100 will be used
to compute the final average on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on timestep 200,
etc. If Nrepeat=1 and Nfreq = 100, then no time averaging is done; values are simply generated on timesteps
100,200,etc.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
mode = scalar, then if no bracketed term is appended, the global scalar calculated by the compute is used. If a
bracketed term is appended, the Ith element of the global vector calculated by the compute is used. If mode =
vector, then if no bracketed term is appended, the global vector calculated by the compute is used. If a bracketed
term is appended, the Ith column of the global array calculated by the compute is used. See the discussion above

294

for how I can be specified with a wildcard asterisk to effectively specify multiple values.

Note that there is a compute reduce command which can sum per-particle or per-grid or per-surf quantities into a
global scalar or vector which can thus be accessed by fix ave/time. Also Note that users can also write code for
their own compute styles and add them to SPARTA; their output can then be processed by this fix.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If mode =
scalar, then if no bracketed term is appended, the global scalar calculated by the fix is used. If a bracketed term is
appended, the Ith element of the global vector calculated by the fix is used. If mode = vector, then if no bracketed
term is appended, the global vector calculated by the fix is used. If a bracketed term is appended, the Ith column
of the global array calculated by the fix is used. See the discussion above for how I can be specified with a
wildcard asterisk to effectively specify multiple values.

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery, else
an error will result. Users can also write code for their own fix styles and add them to SPARTA.

If a value begins with "v_", a variable name must follow which has been previously defined in the input script.
Variables can only be used as input for mode = scalar. Only equal-style variables can be referenced. See the
variable command for details. Note that variables of style equal define a formula which can reference stats_style
keywords, or they can invoke other computes, fixes, or variables when they are evaluated, so this is a very general
means of specifying quantities to time average.

Additional optional keywords also affect the operation of this fix.

If the mode keyword is set to scalar, then all input values must be global scalars, or elements of global vectors. If
the mode keyword is set to vector, then all input values must be global vectors, or columns of global arrays. They
can also be global arrays, which are converted into a series of global vectors (one per column), as explained
above.

The ave keyword determines how the values produced every Nfreq steps are averaged with values produced on
previous steps that were multiples of Nfreq, before they are accessed by another output command or written to a
file.

If the ave setting is one, then the values produced on timesteps that are multiples of Nfreq are independent of each
other; they are output as-is without further averaging.

If the ave setting is running, then the values produced on timesteps that are multiples of Nfreq are summed and
averaged in a cummulative sense before being output. Each output value is thus the average of the value produced
on that timestep with all preceding values. This running average begins when the fix is defined; it can only be
restarted by deleting the fix via the unfix command, or by re-defining the fix by re-specifying it.

If the ave setting is window, then the values produced on timesteps that are multiples of Nfreq are summed and
averaged within a moving "window" of time, so that the last M values are used to produce the output. E.g. if M =
3 and Nfreq = 1000, then the output on step 10000 will be the average of the individual values on steps
8000,9000,10000. Outputs on early steps will average over less than M values if they are not available.

The start keyword specifies what timestep averaging will begin on. The default is step 0. Often input values can
be 0.0 at time 0, so setting start to a larger value can avoid including a 0.0 in a running or windowed average.

The off keyword can be used to flag any of the input values. If a value is flagged, it will not be time averaged.
Instead the most recent input value will always be stored and output. This is useful if one of more of the inputs
produced by a compute or fix or variable are effectively constant or are simply current values. E.g. they are being

295

written to a file with other time-averaged values for purposes of creating well-formatted output.

The file keyword allows a filename to be specified. Every Nfreq steps, one quantity or vector of quantities is
written to the file for each input value specified in the fix ave/time command. For mode = scalar, this means a
single line is written each time output is performed. Thus the file ends up to be a series of lines, i.e. one column of
numbers for each input value. For mode = vector, an array of numbers is written each time output is performed.
The number of rows is the length of the input vectors, and the number of columns is the number of values. Thus
the file ends up to be a series of these array sections.

The title1 and title2 and title3 keywords allow specification of the strings that will be printed as the first 2 or 3
lines of the output file, assuming the file keyword was used. SPARTA uses default values for each of these, so
they do not need to be specified.

By default, these header lines are as follows for mode = scalar:

Time-averaged data for fix ID
TimeStep value1 value2 ...

In the first line, ID is replaced with the fix-ID. In the second line the values are replaced with the appropriate
fields from the fix ave/time command. There is no third line in the header of the file, so the title3 setting is
ignored when mode = scalar.

By default, these header lines are as follows for mode = vector:

Time-averaged data for fix ID
TimeStep Number-of-rows
Row value1 value2 ...

In the first line, ID is replaced with the fix-ID. The second line describes the two values that are printed at the first
of each section of output. In the third line the values are replaced with the appropriate fields from the fix ave/time
command.

Restart, output info:

No information about this fix is written to binary restart files.

This fix produces a global scalar or global vector or global array which can be accessed by various output
commands. The values can only be accessed on timesteps that are multiples of Nfreq since that is when averaging
is performed.

A scalar is produced if only a single input value is averaged and mode = scalar. A vector is produced if multiple
input values are averaged for mode = scalar, or a single input value for mode = vector. In the first case, the length
of the vector is the number of inputs. In the second case, the length of the vector is the same as the length of the
input vector. An array is produced if multiple input values are averaged and mode = vector. The global array has #
of rows = length of the input vectors and # of columns = number of inputs.

Restrictions: none

Related commands:

>compute, fix ave/grid, fix ave/surf, variable

Default:

296

The option defaults are mode = scalar, ave = one, start = 0, no file output, title 1,2,3 = strings as described above,
and no off settings for any input values.

297

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix balance command

fix balance/kk command

Syntax:

fix ID balance Nfreq thresh bstyle args

ID is documented in fix command•
balance = style name of this fix command•
Nfreq = perform dynamic load balancing every this many steps•
thresh = rebalance if imbalance factor is above this threshhold•
bstyle = random or proc or rcb

random args = none
proc args = none
rcb args = weight

 weight = cell or part or time

•

zero or more keyword/value(s) pairs may be appended•
keyword = axes or flip

axes value = dims
 dims = string with any of "x", "y", or "z" characters in it

flip value = yes or no

•

Examples:

fix 1 balance 1000 1.1 rcb cell
fix 2 balance 10000 1.0 random

Description:

This command dynamically adjusts the assignment of grid cells and their particles to processors as a simulation
runs, to attempt to balance the computational cost (load) evenly across processors. The load balancing is
"dynamic" in the sense that rebalancing is performed periodically during the simulation. To perform "static"
balancing, before or between runs, see the balance_grid command.

This command is useful to use during simulations where the spatial distribution of particles varies with time,
leading to load imbalance.

After grid cells have been assigned, they are migrated to new owning processors, along with any particles they
own or other per-cell attributes stored by fixes. The internal data structures within SPARTA for grid cells and
particles are re-initialized with the new decomposition.

The details of how child cells are assigned to processors by the various options of this command are described
below. The cells assigned to each processor will either be "clumped" or "dispersed".

The rcb keyword will produce clumped assignments of child cells to each processor. This means each processor's
cells will be geometrically compact. The random and proc keywords will produce dispersed assignments of child
cells to each processor.

298

https://sparta.github.io

IMPORTANT NOTE: See Section 6.8 of the manual for an explanation of clumped and dispersed grid cell
assignments and their relative performance trade-offs.

Rebalancing is attempted by this command once every Nfreq timesteps, but only if the current imbalance factor
exceeds the specified thresh. This factor is defined as the maximum number of particles owned by any processor,
divided by the average number of particles per processor. Thus an imbalance factor of 1.0 is perfect balance. For
10000 particles running on 10 processors, if the most heavily loaded processor has 1200 particles, then the factor
is 1.2, meaning there is a 20% imbalance. The thresh setting must be >= 1.0.

IMPORTANT NOTE: This command attempts to minimize the imbalance factor, as defined above. But
computational cost is not strictly proportional to particle count, depending on the collision and chemistry models
being used. Also, changing the assignment of grid cells and particles to processors may lead to additional
communication overheads, e.g. when migrating particles between processors. Thus you should benchmark the run
times of your simulation to judge how often balancing should be performed, and how aggressively to set the
thresh value.

The random keyword means that each grid cell will be assigned randomly to one of the processors. In this case
every processor will typically not be assigned exactly the same number of grid cells.

The proc keyword means that each processor will choose a random processor to assign its first grid cell to. It will
then loop over its grid cells and assign each to consecutive processors, wrapping around the collection of
processors if necessary. In this case every processor will typically not be assigned exactly the same number of
grid cells.

The rcb keyword uses a recurvise coordinate bisectioning (RCB) algorithm to assign spatially-compact clumps of
grid cells to processors. Each grid cell has a "weight" in this algorithm so that each processor is assigned an equal
total weight of grid cells, as nearly as possible.

If the weight argument is specified as cell, then the weight for each grid cell is 1.0, so that each processor will end
up with an equal number of grid cells.

If the weight argument is specified as part, than the weight for each grid cell is the number of particles it currently
owns, so that each processor will end up with an equal number of particles.

If the weight argument is specified as time, then timers are used to estimate the cost of each grid cell. The cost
from the timers is given on a per processor basis, and then assigned to grid cells by weighting by the relative
number of particles in the grid cells. If no timing data has yet been collected at the point in a script where this
command is issued, a cell style weight will be used instead of time. A small warmup run (for example 100
timesteps) can be used before the balance command so that timer data is available. The number of timesteps Nfreq
between balancing steps also needs to be large enough to give reliable timings. The timers used for balancing tally
time from the move, sort, collide, and modify portions of each timestep.

IMPORTANT NOTE: The adapt_grid command zeros out timing data, so the weight time option is not available
immediatly after this command.

IMPORTANT NOTE: The coarsening option in fix_adapt may shift cells to different processors, which makes the
accumulated timing data for the weight time option less accurate when load balancing is performed immediately
after this command.

Here is an example of an RCB partitioning for 24 processors, of a 2d hierarchical grid with 5 levels, refined
around a tilted ellipsoidal surface object (outlined in pink). This is for a weight cell setting, yielding an equal
number of grid cells per processor. Each processor is assigned a different color of grid cells. (Note that less colors

299

than processors were used, so the disjoint yellow cells actually belong to three different processors). This is an
example of a clumped distribution where each processor's assigned cells can be compactly bounded by a
rectangle. Click for a larger version of the image.

The optional keywords axes and flip only apply to the rcb style. Otherwise they are ignored.

The axes keyword allows limiting the partitioning created by the RCB algorithm to a subset of dimensions. The
default is to allow cuts in all dimension, e.g. x,y,z for 3d simulations. The dims value is a string with 1, 2, or 3
characters. The characters must be one of "x", "y", or "z". They can be in any order and must be unique. For
example, in 3d, a dims = xz would only partition the 3d grid only in the x and z dimensions.

The flip keyword is useful for debugging. If it is set to yes then each time an RCB partitioning is done, the
coordinates of grid cells will (internally only) undergo a sign flip to insure that the new owner of each grid cell is
a different processor than the previous owner, at least when more than a few processors are used. This will insure
all particle and grid data moves to new processors, fully exercising the rebalancing code.

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global scalar which is the imbalance factor after the most recent rebalance. It also computes a
global vector of length 3 with additional information about the most recent rebalancing and the cummulative
count of rebalancings. The 3 values in the vector are as follows:

1 = max particle count on any processor after last rebalance•
2 = imbalance factor before the last rebalance was performed•
3 = cummulative count of rebalances since the fix was specified•

As explained above, the imbalance factor is the ratio of the maximum number of particles on any processor to the
average number of particles per processor. For the rcb style's time option, the imbalance factor after the most

300

recent rebalance cannot be computed and 0.0 is returned for the global scalar value.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions: none

Related commands:

create_grid, balance_grid

Default: none

301

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix dt/reset command

Syntax:

fix ID dt/reset Nfreq step weight resetflag

ID is documented in fix command•
dt/reset = style name of this fix command•
Nfreq = perform timestep calculation every this many steps•
step = compute or fix column for per-grid cell timestep, prefaced by "c_" or "f_"•
weight = weight (0.0 to 1.0) applied to average per-cell timestep when calculating global timestep•
resetflag = 1 to overwrite global timestep with new timestep, 0 to just calculate new timestep•

Examples:

compute 1 grid all mymixture nrho temp usq vsq wsq
fix 1 ave/grid all 10 50 500 c_1[*]
compute mct lambda/grid f_1[1] f_1[2] tau
compute tstep dt/grid all 0.25 0.1 c_mct f_1[2] f_1[3] f_1[4] f_1[5]

fix 2 dt/reset 500 c_tstep 0.1 1

Description:

Calculate a new global timestep for the simulation based on per grid cell timesteps calculated by a compute or fix.
The new global timestep can be output by the stats_style command. Or it can be used to overwrite the current
global timestep for a variable time simulation. See this section of the manual for more information on variable
timestep simulations.

The Nfreq argument specifies how often the global timestep is calculated.

The step argument specifies a compute which calculates a per grid cell timestep. Or it specifies a fix which time
averages a per grid cell timestep. Currently the only compute that calculates a per grid cell timestep is compute
dt/grid. The fix ave/grid command could perform a time average of the compute.

This is done by specifying the step argument like this:

c_ID = compute with ID that calculates a per grid cell timestep as a vector output•
c_ID[m] = compute with ID that calculates a timestep as its Mth column of array output•
f_ID[m] = fix with ID that calculates a time-averaged timestep as a vector output•
f_ID[m] = fix with ID that calculates a time-averaged timestep as its Mth column of array output•

IMPORTANT NOTE: If the ID of a fix ave/grid command is used as the step argument, it only produces output
on timesteps that are multiples of its Nfreq argument. Thus this fix can only be invoked on those timesteps.

Note that some of the per-cell timesteps may be zero for several reasons. First, data used to calculate the timestep,
such as mean collision time, temperature, or particle speed, may be zero. Also, some cells may not contain
particles, either due to their type or to local flow conditions. For example, split cells (in which sub cells store the
particles) and cells interior to surface objects do not store particles. See Section 6.8 of the manual for details of
how SPARTA defines child, unsplit, split, and sub cells.

302

https://sparta.github.io

From the per-cell timesteps, 3 values are extracted by this fix. They are the minimum positive timestep (DTmin)
for all cells, the maximum positive timestep (DTmax) for all cells, and the average positive timestep (DTave) over
all cells. Cells with a timestep value of zero are not included in the mininum, maximum, and average timestep
calculations.

A new global timestep is than calculated by this formula, using the specified weight argument:

DTnew = (1-weight)*DTmin + weight*DTave

If the resetflag argument is specified as 1, then the global timestep for the simulation, initially specified by the
timestep command, is overwritten with the new DTnew value. If resetflag is 0, then the global timestep is not
changed.

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global scalar which is the new global timestep (DTnew above) after the most recent timestep
re-calculation. This value is accessible to other commands whether or not the global timestep is overwritten with
the new value.

It also computes a global vector of length 3 with these values:

1 = DTmin•
2 = DTmax•
3 = DTave•

Related commands:

compute dt/grid

Default: none

303

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix emit/face command

fix emit/face/kk command

Syntax:

fix ID emit/face mix-ID face1 face2 ... keyword value(s) ...

ID is documented in fix command•
emit/face = style name of this fix command•
mix-ID = ID of mixture to use when creating particles•
face1,face2,... = one or more of all or xlo or xhi or ylo or yhi or zlo or zhi•
zero or more keyword/value(s) pairs may be appended•
keyword = n or nevery or perspecies or region or subsonic or twopass

n value = Np = number of particles to create
nevery value = Nstep = add particles every this many timesteps
perspecies value = yes or no
region value = region-ID
subsonic values = Psub Tsub

 Psub = pressure setting at inflow boundary (pressure units)
 Tsub = temperature setting at inflow boundary, can be NULL (temperature units)

twopass values = none

•

Examples:

fix in emit/face air all
fix in emit/face mymix xlo yhi n 1000 nevery 10 region circle
fix in emit/face air xlo subsonic 0.1 300
fix in emit/face air xhi subsonic 0.05 NULL twopass

Description:

Emit particles from one or more faces of the simulation box, continuously during a simulation. If invoked every
timestep, this fix creates a continuous influx of particles thru the face(s).

The properties of the added particles are determined by the mixture with ID mix-ID. This sets the number and
species of added particles, as well as their streaming velocity, thermal temperature, and internal energy modes.
The details are explained below.

One or more faces of the simulation box can be specified via the face1, face2, etc arguments. The 6 possible faces
can be specified as xlo, xhi, ylo, yhi, zlo, or zhi. Specifying all is the same as specifying all 6 individual faces.

On each insertion timestep, each grid cell with one or more of its faces touching a specified boundary face
performs the following computations to add particles. The particles are added at the beginning of the SPARTA
timestep.

The molecular flux across a grid cell face per unit time is given by equation 4.22 of (Bird94). The number of
particles M to insert on a particular grid cell face is based on this flux and additional global, flow, and cell face
properties:

global property: fnum ratio as specified by the global command•

304

https://sparta.github.io

flow properties: number density, streaming velocity, and thermal temperature•
cell face properties: area of face and its orientation relative to the streaming velocity•

The flow properties are defined for the specified mixture via the mixture command.

If M has a fractional value, e.g. 12.5, then 12 particles are added, and a 13th depending on the value of a random
number. Each particle is added at a random location on the grid cell face. The particle species is chosen randomly
in accord with the frac settings of the collection of species in the mixture, as set by the mixture command.

IMPORTANT NOTE: The preceeding calculation is actually done using face areas associated with weighted cell
volumes. Grid cells can be weighted using the global weight command.

The velocity of the particle is set to the sum of the streaming velocity and a thermal velocity sampled from the
thermal temperature. The internal energy modes of the particle are determined by the trot and tvib settings of the
mixture and the rotate and vibrate options of the collide_modify command. Note that if the collide command has
not been specified (free molecular flow), then no rotational or vibrational energy will be assigned to created
particles.

If the final particle velocity is not directed "into" the grid cell, then the velocity sampling procedure is repeated
until it is. This insures that all added particles enter the simulation domain, as desired.

The first timestep that added particles are advected, they move for a random fraction of the timestep. This insures
a continuous flow field of particles entering the simulation box.

The n keyword can alter how many particles are added, which can be useful for debugging purposes. If Np is set
to 0, then the number of added particles is a function of fnum, nrho, and other mixture settings, as described
above. If Np is set to a value > 0, then the fnum and nrho settings are ignored, and exactly Np particles are added
on each insertion timestep. This is done by dividing Np by the total number of grid cells that are adjacent to the
specified box faces and adding an equal number of particles per grid cell.

The nevery keyword determines how often particles are added. If Nstep > 1, this may give a non-continuous,
clumpy distribution in the inlet flow field.

The perspecies keyword determines how the species of each added particle is randomly determined. This has an
effect on the statistical properties of added particles.

If perspecies is set to yes, then a target insertion number M in a grid cell is calculated for each species, which is a
function of the relative number fraction of the species, as set by the mixture nfrac command. If M has a fractional
value, e.g. 12.5, then 12 particles of that species will always be added, and a 13th depending on the value of a
random number.

If perspecies is set to no, then a single target insertion number M in a grid cell is calculated for all the species.
Each time a particle is added, a random number is used to choose the species of the particle, based on the relative
number fractions of all the species in the mixture. As before, if M has a fractional value, e.g. 12.5, then 12
particles will always be added, and a 13th depending on the value of a random number.

Here is a simple example that illustrates the difference between the two options. Assume a mixture with 2 species,
each with a relative number fraction of 0.5. Assume a particular grid cell adds 10 particles from that mixture. If
perspecies is set to yes, then exactly 5 particles of each species will be added on every timestep insertions take
place. If perspecies is set to no, then exactly 10 particles will be added every time and on average there will be 5
particles of each of the two species. But on one timestep it might be 6 of the first and 4 of the second. On another
timestep it might be 3 of the first and 7 of the second.

305

If the region keyword is used, then a particle will only added if its position is within the specified region-ID. This
can be used to only allow particle insertion on a subset of the boundary face. Note that the side option for the
region command can be used to define whether the inside or outside of the geometric region is considered to be
"in" the region.

IMPORTANT NOTE: If the region and n keywords are used together, less than N particles may be added on an
insertion timestep. This is because grid cells will be candidates for particle insertion, unless they are entirely
outside the bounding box that encloses the region. Particles those grid cells attempt to add are included in the
count for N, even if some or all of the particle insertions are rejected due to not being inside the region.

The subsonic keyword uses the method of Fang and Liou (Fang02) to determine the number of particles to insert
in each grid cell on the emitting face(s). They used the method of characteristics to calculate the mean properties
of the incoming molecular flux, so that the prescribed pressure condition is achieved. These properties are then
applied to calculate the molecular flux across a grid cell face per unit time, as given by equation 4.22 of (Bird94).

This keyword allows specification of both the pressure and temperature at the boundary or just the pressure (by
specifying the temperature as NULL). If specified, the temperature must be > 0.0. Currently, instantaneous values
for the density, temperature, and stream velocity of particles in the cells adjacent to the boundary face(s) are
computed and used to determine the properties of inserted particles on each timestep.

IMPORTANT NOTE: Caution must be exercised when using the subsonic boundary condition without specifying
an inlet temperature. In this case the code tries to estimate the temperature of the flow from the properties of the
particles in the domain. If the domain contains few particles per cell it may lead to spurious results. This boundary
condition is meant more for an outlet than an inlet boundary condition, and performs well in cases where the cells
are adequately populated.

IMPORTANT NOTE: When using this keyword, you should also use an appropriate boundary collision or
chemistry model via the boundary or bound_modify or surf_collide or surf_react commands, so that particles
hitting the surface disappear as if they were exiting the simulation domain. That is necessary to produce the
correct subsonic conditions that the particle insertions due to this command are trying to achieve.

The twopass keyword does not require a value. If used, the insertion procedure will loop over the insertion grid
cells twice, the same as the KOKKOS package version of this fix does, so that it can reallocate memory
efficiently, e.g. on a GPU. If this keyword is used the non-KOKKOS and KOKKOS version will generate exactly
the same set of particles, which makes debugging easier. If the keyword is not used, the non-KOKKOS and
KOKKOS runs will use random numbers differently and thus generate different particles, though they will be
statistically similar.

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global vector of length 2 which can be accessed by various output commands. The first
element of the vector is the total number of particles added on the most recent insertion step. The second element
is the cummulative total number added since the beginning of the run. The 2nd value is initialized to zero each
time a run is performed.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

306

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

Particles cannot be emitted from periodic faces of the simulation box. Particles cannot be emitted from z faces of
the simluation box for a 2d simulation.

A n setting of Np > 0 can only be used with a perspecies setting of no.

A warning will be issued if a specified face has an inward normal in a direction opposing the streaming velocity.
Particles will still be emitted from that face, so long as a small fraction have a thermal velocity large enough to
overcome the outward streaming velocity, so that their net velocity is inward. The threshold for this is that a
thermal velocity 3 sigmas from the mean thermal velocity is large enough to overcome the outward streaming
velocity and produce a net velocity into the simulation box.

Related commands:

mixture, create_particles, fix emit/face/file

Default:

The keyword defaults are n = 0, nevery = 1, perspecies = yes, region = none, no subsonic settings, no twopass
setting.

(Bird94) G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford
(1994).

(Fang02) Y. Fang and W. W. Liou, Microfluid Flow Computations Using a Parallel DSMC Code, AIAA
2002-1057. (2002).

307

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix emit/face/file command

Syntax:

fix ID emit/face/file mix-ID face filename boundary-ID keyword value ...

ID is documented in fix command•
emit/face/file = style name of this fix command•
mix-ID = ID of mixture to use when creating particles•
face = xlo or xhi or ylo or yhi or zlo or zhi•
filename = input data file with boundary values for the emission•
boundary-ID = section of data file to read•
zero or more keyword/value pairs may be appended•
keyword = frac or nevery or perspecies or region

frac value = fraction = 0.0 to 1.0 fraction of particles to insert
nevery value = Nstep = insert every this many timesteps
perspecies value = yes or no
region value = region-ID

•

Examples:

fix in emit/face/file air xlo input.data xlo
fix in emit/face/file mymix ylo file.txt oneface frac 0.1 nevery 10

Description:

Emit particles from a face of the simulation box, continuously during a simulation. The particles are added using
properties of the specified mixture and values read from an input file that can override the default global values
for those properties. In particular, the input file can be used to create an influx of particles that varies spatially
over the surface of the face. This can be useful, for example, to model an object inserted into a plume flow where
the flow has spatially varying properties. If invoked every timestep, this fix creates a continuous influx of
particles thru the face.

The properties of the added particles are determined by the mixture with ID mix-ID and the input file. Together
they set the number and species of added particles, as well as their streaming velocity, thermal temperature, and
internal energy modes. Settings for a subsonic pressure boundary condition is also allowed. The details are
explained below.

Only one face of the simulation box can be specified via the face argument. The 6 possible faces are xlo, xhi, ylo,
yhi, zlo, or zhi. This command can be used multiple times to add particles on multiple faces.

On each insertion timestep, each grid cell with a face touching the specified boundary face performs the following
computations to add particles. The particles are added at the beginning of the SPARTA timestep.

The molecular flux across a grid cell face per unit time is given by equation 4.22 of (Bird94). The number of
particles M to add on a particular grid cell face is based on this flux and additional global, flow, and cell face
properties:

global property: fnum ratio as specified by the global command•
flow properties: number density, streaming velocity, and thermal temperature•

308

https://sparta.github.io

cell face properties: area of face and its orientation relative to the streaming velocity•

The flow properties are defined for the specified mixture via the mixture command. Any or all them can be
overridden by values in the input data file, which affect individual grid cells as described below.

If M has a fractional value, e.g. 12.5, then 12 particles are added, and a 13th depending on the value of a random
number. Each particle is added at a random location on the grid cell face. The particle species is chosen randomly
in accord with the frac settings of the collection of species in the mixture, as set by the mixture command. These
can also be overridden by spatially varying number fraction values in the input data file, as described below.

The velocity of the particle is set to the sum of the streaming velocity and a thermal velocity sampled from the
thermal temperature. The internal energy modes of the particle are determined by the trot and tvib settings and the
rotate and vibrate options of the collide_modify command. Note that if the collide command has not been
specified (free molecular flow), then no rotational or vibrational energy will be assigned to created particles.

If the final particle velocity is not directed "into" the grid cell, then the velocity sampling procedure is repeated
until it is. This insures that all added particles enter the simulation domain, as desired.

The first timestep that added particles are advected, they move for a random fraction of the timestep. This insures
a continuous flow field of particles entering the simulation box.

For 3d simulations, the input data file defines a 2d mesh of points which conceptually overlays some portion or
all of the specified face of the simulation box. For a 2d simulation, a 1d mesh of points is defined. The set of
mesh points is topologically regular, but can have uniform or non-uniform spacing in each of its two or one
dimensions (for 3d or 2d problems). One or more values can be defined at every mesh point, which override any
of the mixture settings defined by the mixture command. These are the flow properties discussed above (number
density, streaming velocity, and thermal temperature), as well as the number fraction of any species in the
mixture. Any value not defined in the input data file defaults to the mixture value.

IMPORTANT NOTE: It is critical to understand that the input data file defines mesh points on the face of the
simulation box. It does not define mesh cells, e.g. 2d squares or rectangles, each with flow properties.

For 3d simulations, 2d mesh points are defined in the file using I,J indices. (The 1d mesh points for 2d simulations
are described below). I and J map to any of the simulation box faces in this manner. A simulation box face has
two varying dimensions (e.g. ylo face = x and z dimensions). The I index in the file corresponds to the "lowest" of
these dimensions, where x < y < z. The J index in the file corresponds to the higher. Thus for face ylo, I = x and J
= z. A low I or J value corresponds to a low x or z value, regardless of whether the mapping is to the ylo or yhi
face. 1d mesh points for a 2d simulation are defined in an analogous manner, e.g. for face xlo, I = y.

For a 3d simulation, interpolation from values on the 2d mesh points to any grid cell face that is on the
corresponding simulation box face is done in the following manner. There are 3 cases to consider.

(a) For a grid cell face that is entirely inside the area defined by the file mesh points, the centroid (center point) of
the grid cell face is surrounded geometrically by 4 mesh points. The 4 values defined on those 4 points are
averaged in a weighted manner using bilinear interpolation (described below) to determine the value for the grid
cell face. This value is then used for the calculation described above for M = the number of particles to add on the
cell face as well as the properties of the added particles.

(b) For a grid cell face that is entirely outside the area defined by the file mesh points, no particles are added in
that grid cell.

309

(c) For a grid cell face that partially overlaps the area defined by the file mesh points, the extent of the overlap is
computed. The centroid (center point) of the overlap area is surrounded geometrically by 4 mesh points. The
values for those 4 points are used as in (a) above to determine properties of particles added in that grid cell. Note
that the area of insertion, used to calculate M, is the overlap area, which is smaller than the grid cell face area.
Also, particles are only added within the overlap area of the grid cell face.

For a 2d simulation, the 3 cases are similar, except for (a) and (c) the centroid is the midpoint of a line segment,
the centroid is surrounded by 2 mesh points, and linear interpolation (described below) is performed to determine
the value for the grid face.

The format of the input data file is a series of one or more sections, defined as follows (without the parenthesized
comments). Note that one file can contain many sections, each with a different set of tabulated values. The
sections can be a mix of 2d and 3d formats. SPARTA reads the file section by section, skipping sections with
non-matching boundary IDs, until it finds one that matches the specified boundary-ID. The lines that follow must
be in this order:

plume ABC info (one or more comment or blank lines)

PLUME_ABC (boundary-ID is first word on line)
NIJ 4 10 (mesh size: Ni by Nj points)
NV 3 (Nv = number of values per mesh point)
VALUES nrho temp Ar (list of Nv values per mesh point)
IMESH 0.0 0.3 0.9 1.0 (mesh point coordinates in I direction)
JMESH ... (mesh point coordinates in J direction)
 (blank)
1 1 1.0 300.0 0.5 (I, J, value1, value2, ...)
1 2 1.02 310.0 0.5
...
4 10 3.0 400.0 0.7

This format is for a 3d simulation. For a 2d simulation, there are 3 changes:

"NIJ 4 10" is replaced by "NI 6"
JMESH line is not included
"I,J,value1,..." is replaced by "I,value1,..."

A section begins with a non-blank line whose first character is not a "#". Blank lines or lines starting with "#" can
be used as comments between sections. The first line begins with a boundary-ID which identifies the section. The
line can contain additional text, but the initial text must match the boundary-ID specified in the fix emit/face/file
command. Otherwise the section is skipped.

The VALUES line lists Nv keywords. The list of possible keywords is as follows, along with the meaning of the
numeric value specified for the mesh point:

nrho = number density•
vx,vy,vz = 3 components of streaming velocity•
temp = thermal temperature•
trot = rotational temperature•
tvib = vibrational temperature•
press = pressure for subsonic boundary condition•
species = number fraction of any species in the mixture•

The IMESH and JMESH lines must list values that are monotonically increasing.

310

Following a blank line, the next N = Ni x Nj lines (or N = Ni lines for a 2d simulation) list the tabulated values.
The format of each line is I,J followed by Nv values. The N lines can be in any order, but all unique I,J (or I for
2d) indices must be listed.

Note that if number fractions are specified for one or more species in the mixture, then they override number
fraction values for the mixture itself, as set by the mixture command. However, for each grid cell, the rule that the
number fraction of all species in the mixture must sum to 1.0 is enforced, just as it is for the mixture. This means
that number fractions of species not specified in the file or in the mixture may be reset (for that grid cell) to insure
the sum = 1.0, as explained on the mixture command doc page. If this cannot be done, an error will be generated.

If the press keyword is used, this means a subsonic pressure boundary condition is used for the face, similar to
how the subsonic keyword is used for the fix emit/face command. If just the press keyword is specified, but not
the temp keyword, then it is similar to the "subsonic press NULL" setting for the fix emit/face command. If both
keywords are used it is similar to the "subsonic press temp" setting for the fix emit/face command. The difference
with this command is that both the press and temp values can be vary spatially across the box face, like the other
keyword values.

The subsonic pressure boundary condition is uses the method of Fang and Liou (Fang02) to determine the number
of particles to insert in each grid cell on the emitting face(s). They used the method of characteristics to calculate
the mean properties of the incoming molecular flux, so that the prescribed pressure condition is achieved. These
properties are then applied to calculate the molecular flux across a grid cell face per unit time, as given by
equation 4.22 of (Bird94).

As explained above the input data file can specify both the pressure and temperature at the boundary or just the
pressure. If specified, the temperature must be > 0.0. Currently, instantaneous values for the density, temperature,
and stream velocity of particles in the cells adjacent to the boundary face(s) are computed and used to determine
the properties of inserted particles on each timestep.

IMPORTANT NOTE: Caution must be exercised when using the subsonic boundary condition without specifying
an inlet temperature. In this case the code tries to estimate the temperature of the flow from the properties of the
particles in the domain. If the domain contains few particles per cell it may lead to spurious results. This boundary
condition is meant more for an outlet than an inlet boundary condition, and performs well in cases where the cells
are adequately populated.

IMPORTANT NOTE: When using a subsonic prsesure boundary condition, you should also use an appropriate
boundary collision or chemistry model via the boundary or bound_modify or surf_collide or surf_react
commands, so that particles hitting the surface disappear as if they were exiting the simulation domain. That is
necessary to produce the correct subsonic conditions that the particle insertions due to this command are trying to
achieve.

For 3d simulations, bilinear interpolation from the 2d mesh point values specified in the file is performed using
this equation to calculate the value at the centroid point (i,j) in the grid cell face:

f(i,j) = 1/area * (f(i1,j1)*(i2-i)*(j2-j) + f(i2,j1)*(i-i1)*(j2-j) +
 f(i2,j2)*(i-i1)*(j-j1) + f(i1,j2)*(i2-i)*(j-j1))

where the 4 surrounding mesh points are (i1,j1), (i2,j1), (i2,j2), and (i1,j2). The 4 f() values on the right-hand side
are the values defined at the mesh points. The sum is normalized by the area of the overlap between the grid cell
face and the file mesh.

For 2d simulations, linear interpolation from the 1d mesh point values specified in the file is performed using this
equation to calculate the value at the centroid point (i) in the grid cell line:

311

f(i) = 1/length * (f(i1)*(i2-i) + f(i2)*(i-i1)
 = f(i1) + (i - i1)/(i2 - i1) * (f(i2) - f(i1))

where the 2 surrounding mesh points are (i1) and (i2). The 2 f() values on the right-hand side are the values
defined at the mesh points. The sum is normalized by the length of the overlap between the grid cell line and file
mesh.

The frac keyword can alter how many particles are added, which can be useful for debugging purposes. If frac is
set to 1.0 (the default) then the number of particles added is the sum of the M values computed for each grid cell
that overlaps with the mesh defined in the file, as described above. If frac < 1.0 then M is scaled by frac to
determine the number of particles added in each grid cell. Thus a simulation with less particles can easily be run
to test if it is setup correctly.

The nevery keyword determines how often particles are added. If Nstep > 1, this may give a non-continuous,
clumpy distribution in the inlet flow field.

The perspecies keyword determines how the species of each added particle is randomly determined. This has an
effect on the statistical properties of added particles.

If perspecies is set to yes, then a target insertion number M in a grid cell is calculated for each species, which is a
function of the relative number fraction of the species, as set by the mixture nfrac command. If M has a fractional
value, e.g. 12.5, then 12 particles of that species will always be added, and a 13th depending on the value of a
random number.

If perspecies is set to no, then a single target insertion number M in a grid cell is calculated for all the species.
Each time a particle is added, a random number is used to choose the species of the particle, based on the relative
number fractions of all the species in the mixture. As before, if M has a fractional value, e.g. 12.5, then 12
particles will always be added, and a 13th depending on the value of a random number.

Here is a simple example that illustrates the difference between the two options. Assume a mixture with 2 species,
each with a relative number fraction of 0.5. Assume a particular grid cell adds 10 particles from that mixture. If
perspecies is set to yes, then exactly 5 particles of each species will be added on every timestep insertions take
place. If perspecies is set to no, then exactly 10 particles will be added every time and on average there will be 5
particles of each of the two species. But on one timestep it might be 6 of the first and 4 of the second. On another
timestep it might be 3 of the first and 7 of the second.

If the region keyword is used, then a particle will only added if its position is within the specified region-ID. This
can be used to only allow particle insertion on a subset of the boundary face. Note that the side option for the
region command can be used to define whether the inside or outside of the geometric region is considered to be
"in" the region.

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global vector of length 2 which can be accessed by various output commands. The first
element of the vector is the total number of particles added on the most recent insertion step. The second element
is the cummulative total number added since the beginning of the run. The 2nd value is initialized to zero each
time a run is performed.

Restrictions:

312

Particles cannot be added on periodic faces of the simulation box. Particles cannot be added on z faces of the
simluation box for a 2d simulation.

Unlike the fix emit/face command, no warning is issued if the specified emission face has an inward normal in a
direction opposing the streaming velocity, as defined by the mixture. This is because the streaming velocity as
defined by the specified mixture may be overridden by values in the file.

For that grid cell, particles will still be emitted from that face, so long as a small fraction have a thermal velocity
large enough to overcome the outward streaming velocity, so that their net velocity is inward. The threshold for
this is the thermal velocity for particles 3*sigma from the mean thermal velocity.

Related commands:

mixture, create_particles, fix emit/face

Default:

The keyword defaults are frac = 1.0, nevery = 1, perspecies = yes, region = none.

(Bird94) G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford
(1994).

313

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix emit/surf command

Syntax:

fix ID emit/surf mix-ID group-ID keyword value ...

ID is documented in fix command•
emit/surf = style name of this fix command•
mix-ID = ID of mixture to use when creating particles•
group-ID = ID of surface group that emits particles•
zero or more keyword/value pairs may be appended•
keyword = n or normal or nevery or perspecies or region or subsonic or custom

n value = Np = number of particles to create
 Np can be a variable (see below)

normal value = yes or no = emit normal to surface elements or with streaming velocity
nevery value = Nstep = add particles every this many timesteps
perspecies value = yes or no
region value = region-ID
subsonic values = Psub Tsub

 Psub = pressure setting at inflow boundary (pressure units)
 Tsub = temperature setting at inflow boundary, can be NULL (temperature units)

custom values = attribute s_name
 attribute = nrho or vstream or speed or temp or fractions
 s_name = custom per-surf vector or array with name

•

Examples:

fix in emit/surf air all
fix in emit/face mymix myPatch region circle normal yes
fix in emit/surf air all subsonic 0.1 300
fix in emit/surf air all subsonic 0.05 NULL

read_surf sdata.circle custom myrho float 0 custom mystream float 3
fix in emit/surf air all custom nrho s_myrho custom vstream s_mystream

Description:

Emit particles from a group of surface elements, continuously during a simulation. If invoked every timestep, this
fix creates a continuous outflux of particles from the surface elements in the group. This command can only be
used with explicit surfaces, not implicit. See Section Howto 6.13 for a discussion of explicit and implicit surface
elements.

The properties of the added particles are determined by the mixture with ID mix-ID. This sets the number and
species of added particles, as well as their streaming velocity, thermal temperature, and internal energy modes.
The details are explained below.

Which surface elements emit particles is specified by the group-ID for a surface group, which defines a set of
surface elements. The group surf is used to define surface groups.

On each insertion timestep, each grid cell that overlaps with one or more emitting surface elements performs the
following computations to add particles for each grid cell/surface element pairing. The particles are added at the
beginning of the SPARTA timestep.

314

https://sparta.github.io

The molecular flux emitted from a surface element per unit time is given by equation 4.22 of (Bird94). The
number of particles M to insert on the portion of a surface element that is contained within a grid cell is based on
this flux and additional global, flow, and surface element properties:

global property: fnum ratio as specified by the global command•
flow properties: number density, streaming velocity, and thermal temperature•
surface element properties: portion of surface element area that overlaps with the grid cell and its
orientation relative to the streaming velocity

•

The flow properties are defined for the specified mixture via the mixture command.

If M has a fractional value, e.g. 12.5, then 12 particles are added, and a 13th depending on the value of a random
number. Each particle is added at a random location within the portion of the surface element that overlaps with
the grid cell. The particle species is chosen randomly in accord with the frac settings of the collection of species
in the mixture, as set by the mixture command.

IMPORTANT NOTE: The preceeding calculation is actually done using surface element areas associated with
weighted cell volumes. Grid cells can be weighted using the global weight command.

The velocity of the particle is set to the sum of the streaming velocity and a thermal velocity sampled from the
thermal temperature. The internal energy modes of the particle are determined by the trot and tvib settings of the
mixture and the rotate and vibrate options of the collide_modify command. Note that if the collide command has
not been specified (free molecular flow), then no rotational or vibrational energy will be assigned to created
particles. See the discussion of the normal keyword below for a way to change the velocity assignment to be
oriented in the direction normal to the surface element, rather than in the direction of the streaming velocity.

If the final particle velocity is not directed "out of" the surface element, then the velocity sampling procedure is
repeated until it is. This insures that all added particles emit from the surface element, as desired.

The first timestep that added particles are advected, they move for a random fraction of the timestep. This insures
a continuous flow field of particles emitting from each surface element.

The n keyword can alter how many particles are added, which can be useful for debugging purposes. If Np is set
to 0, then the number of added particles is a function of fnum, nrho, and other mixture settings, as described
above.

If Np is set to a value > 0, then the fnum and nrho settings are ignored, and roughly Np particles are added on each
insertion timestep. For each grid cell/surface element pair, its target number of emitted particles is set to its
fraction of the total emission area (for all grid cell/surface element pairs), multiplied by Np. If that results in a
fractional value, then an extra particle is emitted depending on the value of a random number, as explained above.

The Np value can be also be specified as an equal-style variable. If the value is a variable, it should be specified as
v_name, where name is the variable name. In this case, the variable will be evaluated on each emission timestep,
and its value used as Np on that step to determine the target number of emitted particles for each grid cell/surface
element pair, the same as described in the preceeding paragraph.

Equal-style variables can specify formulas with various mathematical functions, and include stats_style command
keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to specify a
time-dependent value of Np.

The normal keyword can be used to alter how velocities are set for added particles. If normal is set to no, then a
particle's velocity is set as described above, using the mixture's streaming velocity superposed with a thermal

315

velocity sampled from the temperature of the mixture. Note that the same streaming velocity is used for all
emitting surface elements, regardless of their orientation with respect to the streaming velocity. If normal is set to
yes, then each surface element is assigned its own "streaming" velocity in the following manner. The streaming
velocity points in the direction of the outward normal of the surface element, and its magnitude is set to the
magnitude of the mixture's streaming velocity. A velocity is then assigned to the particle in the same manner as
before. It is assigned the outward streaming velocity superposed with a thermal velocity sampled from the
temperature of the mixture. The effect is that particles effectively stream outward from each emitting surface
element.

The nevery keyword determines how often particles are added. If Nstep > 1, this may give a non-continuous,
clumpy distribution in the inlet flow field.

The perspecies keyword determines how the species of each added particle is randomly determined. This has an
effect on the statistical properties of added particles.

If perspecies is set to yes, then a target insertion number M for a grid cell/surface element pair is calculated for
each species, which is a function of the relative number fraction of the species, as set by the mixture nfrac
command. If M has a fractional value, e.g. 12.5, then 12 particles of that species will always be added, and a 13th
depending on the value of a random number.

If perspecies is set to no, then a single target insertion number M for a grid cell/surface element pair is calculated
for all the species. Each time a particle is added, a random number is used to choose the species of the particle,
based on the relative number fractions of all the species in the mixture. As before, if M has a fractional value, e.g.
12.5, then 12 particles will always be added, and a 13th depending on the value of a random number.

Here is a simple example that illustrates the difference between the two options. Assume a mixture with 2 species,
each with a relative number fraction of 0.5. Assume a particular grid cell/surface element pair adds 10 particles
from that mixture. If perspecies is set to yes, then exactly 5 particles of each species will be added on every
timestep insertions take place. If perspecies is set to no, then exactly 10 particles will be added every time and on
average there will be 5 particles of each of the two species. But on one timestep it might be 6 of the first and 4 of
the second. On another timestep it might be 3 of the first and 7 of the second.

If the region keyword is used, then a particle will only added if its position is within the specified region-ID. This
can be used to only allow particle insertion on a subset of the collective area of the specified group of surface
elements. Note that the side option for the region command can be used to define whether the inside or outside of
the geometric region is considered to be "in" the region.

IMPORTANT NOTE: If the region and n keywords are used together, less than N particles may be added on an
insertion timestep. This is because grid cell/suface element pairs will be candidates for particle insertion, unless
the grid cell is entirely outside the bounding box that encloses the region. Particles those grid cell/surface element
pairs will attempt to add are included in the count for N, even if some or all of the particle insertions are rejected
due to not being inside the region.

The subsonic keyword uses the method of Fang and Liou (Fang02) to determine the number of particles to insert
in each grid cell on the emitting face(s). They used the method of characteristics to calculate the mean properties
of the incoming molecular flux, so that the prescribed pressure condition is achieved. These properties are then
applied to calculate the molecular flux across a grid cell face per unit time, as given by equation 4.22 of (Bird94).

This keyword allows specification of both the pressure and temperature at the surface or just the pressure (by
specifying the temperature as NULL). If specified, the temperature must be > 0.0. Currently, instantaneous values
for the density, temperature, and stream velocity of particles in the cells containing the surface elements are
computed and used to determine the properties of inserted particles on each timestep.

316

IMPORTANT NOTE: Caution must be exercised when using the subsonic boundary condition without specifying
an inlet temperature. In this case the code tries to estimate the temperature of the flow from the properties of the
particles in the domain. If the domain contains few particles per cell it may lead to spurious results. This boundary
condition is meant more for an outlet than an inlet boundary condition, and performs well in cases where the cells
are adequately populated.

IMPORTANT NOTE: When using this keyword, you should also use an appropriate surface collision or
chemistry model via the surf_collide or surf_react commands, so that particles hitting the surface disappear as if
they were exiting the simulation domain. That is necessary to produce the correct subsonic conditions that the
particle insertions due to this command are trying to achieve.

The custom keyword can be used to tailor the emission of particles from individual surface elements. This is done
by using custom per-surf vectors or arrays defined by other commands. E.g. the read_surf command which can
read per-surf attributes included in the surface data file. Or the custom command which allows for definition of
custom per-surf vectors or arrays and their initialization by use of surf-style variables. See Section Howto 6.17 for
a discussion of custom per-surf attributes.

IMPORTANT NOTE: The custom keyword cannot be used together with either the n or subsonic keywords.

The attribute value of the custom keyword can be any of the following:

nrho = number density (# per length^3 units) = per-surf vector•
vstream = 3-component streaming velocity (velocity units) = per-surf array with 3 columns•
speed = length of streaming velocity vector in normal direction (velocity units) = per-surf vector•
temp = temperature (temperature units) = per-surf vector•
fractions = species fractions (unitless) = per-surf array•

The s_name value of the custom keyword is the name of the custom per-surf vector or array. It must store
floating-point values and be a vector or array, as indicated in the list above.

When the fix emit/surf command calculates the number of particles (and their attributes) to be emitted from each
surface element, by default it uses the mixture properties of the specified mix-ID for number density, streaming
velocity, temperature, and relative species fractions. The same values are used for all surface elements. If the
custom keyword is used for one or more of these properties, the values of the associated custom per-surf vector(s)
or array(s) override the default mixture properties.

The custom attribute vstream can only be used if the normal keyword is set to no, which is the default. In this case
it must refer to a 3-column per-surf custom array which stores the 3 streaming velocity components for each
surface element. If the normal keyword is set to yes, then the custom atrribute speed should be used instead. It
must refer to a custom per-surf vector which stores the "speed" of the emission in the direction normal to each
surface element. I.e. it is the scalar length of the streaming velocity vector, as described above for the normal
keyword.

The custom attribute temp sets a temperature for each surface element. This temperature is used as the thermal
temeperature for each inserted particle which means it affects its thermal velocity components as well as its
rotational and vibrational energies.

The custom attribute fractions must refer to a per-surf custom array with N columns, where N is the number of
species in the mixture. For each surface element, the N values will be used to set the relative fractions of emitted
particles for that element, using the logic for the perspecies yes/no keyword described above.

317

For each surface element, the N per-species fractional values must sum to 1.0. However, one or more of the
numeric values can be < zero, say M of them. In this case, each of the M values will be reset to (1 - sum)/M,
where sum is the sum of the N-M values which are >= zero.

Note that the order of species within the N columns of the custom per-surf array, if the same as the order of
species within the mix-ID mixture. This is determined by the mixture command. It is the order the gas species
names were listed when the mixture command was specified (one or more times).

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global vector of length 2 which can be accessed by various output commands. The first
element of the vector is the total number of particles added on the most recent insertion step. The second element
is the cummulative total number added since the beginning of the run. The 2nd value is initialized to zero each
time a run is performed.

Restrictions:

A n setting of Np > 0 or Np as a variable can only be used with a perspecies setting of no.

If normal is set to no, which is the default, then unlike the fix emit/face command, no warning is issued if a
surface element has an inward normal in a direction opposing the streaming velocity, as defined by the mixture.

For that surface element, particles will still be emitted, so long as a small fraction have a thermal velocity large
enough to overcome the outward streaming velocity, so that their net velocity is inward. The threshold for this is
the thermal velocity for particles 3*sigma from the mean thermal velocity.

Related commands:

mixture, create_particles, fix emit/face

Default:

The keyword defaults are n = 0, normal = no, nevery = 1, perspecies = yes, region = none, no subsonic settings.

(Bird94) G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford
(1994).

(Fang02) Y. Fang and W. W. Liou, Microfluid Flow Computations Using a Parallel DSMC Code, AIAA
2002-1057. (2002).

318

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix field/grid command

Syntax:

fix ID field/grid axvar ayvar azvar

ID is documented in fix command•
field/grid = style name of this fix command•
axvar,ayvar,azvar = names of grid-style variables for acceleration components•

Examples:

fix 1 field/grid gradBx gradBy NULL

Description:

Specify the formulas used to calculate the acceleration effect of an external field on particle motion. The ID of
this fix can be used by the global field grid command which applies the field when particles are advected during a
simulation run. This is done by invoking a method in this fix, which evaluates the specified grid-style variables.

Each of the axvar, ayvar, and azvar arguments is the name of a grid-style variable. The variables should compute
the x,y,z components of acceleration applied at the center point of each grid cell in the simulation. Any of the
three variables can be specified as NULL, which means there is no acceleration in that dimension.

Each timestep when a particle is advected the acceleration vector (a) for the grid cell it is in acts as a perturbation
on straight-line motion which affects both the end-of-timestep position (x) and velocity (v) vectors of the particle:

xnew = x + dt*v + 0.5*a*dt^2
vnew = v + dt*a

Note that the formulas encoded by the axvar, ayvar, and azvar variables should produce values that are in units of
acceleration (distance/time^2, see the units command), not force. And they should not include the timestep (dt)
value in the formulas above. That is applied by SPARTA during advection.

See the variable doc page for a description of the formula syntax allowed for grid-style variables. They can
include references to the grid vectors xc, yc, and zc for the grid cell center point. Using these values in a formula
can enable a spatially-dependent field. The formulas can also include the current timestep and timestep size (dt) to
enable a time-dependent field.

NOTE still need to figure this out: And they can include properties of the particle, such as its mass or magnetic
moment.

Note that the global field command provides three alternatives for specifying an external field:

global field constant ... # field is constant in space and time
global field particle ... # field is applied on a per particle basis
global field grid ... # field is applied on a per grid cell basis

This fix is only used for per-grid fields. It should only be used for fields which vary spatially or in time; otherwise
use the constant option which will be much more efficient. The use of per-grid variables allows the field to vary
spatially as a function of the grid cell center point. It also allows the field to vary in time by having the variables

319

https://sparta.github.io

use the current timestep.

NOTE still need to figure out how to do this: The field can also depend on particle attributes, such as its mass and
magnetic moment (for a B field).

Note that use of the global field grid command with this fix will evaluate the specified grid-style variables as
often as requested. For a field that has no time-ependence, you can specificy it only be evaluated once at the
beginning of a run. For a field that is time-dependent you can choose how often to recompute the field, depending
on how fast it varies.

The fix field/particle command is an alternative which will typically run much slower, but be more accurate.
When used with the global field particle command, the particle-style variables it uses are invoked every timestep
using current particle positions. And the field calculation is done for each grid particle, not for each grid cell. The
trade-off is that the fields it calculates for each particle is more accurate, but the simulation will typically run
several times slower than it would with this fix.

Restart, output info:

No information about this fix is written to binary restart files.

This fix stores a per-grid cell array of values which can be accessed by various output commands on any timestep,
e.g. by the dump grid command. The values are those produced by evaluating the grid-style variables. The
number of rows in the array is the number of grid cells this processor owns. The number of columns in the array is
the number of non-NULL variables specified.

Restrictions: none

Related commands:

fix field/particle, global field

Default: none

320

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix field/particle command

Syntax:

fix ID field/particle axvar ayvar azvar

ID is documented in fix command field/particle = style name of this fix command axvar,ayvar,azvar = names of
particle-style variables for acceleration components:ul

Examples:

fix 1 field/particle gradBx gradBy NULL

Description:

Specify the formulas used to calculate the acceleration effect of an external field on particle motion. The ID of
this fix can be used by the global field particle command which applies the field when particles are advected
during a simulation run. This is done by invoking a method in this fix every timestep, which evaluates the
specified particle-style variables.

Each of the axvar, ayvar, and azvar arguments is the name of a particle-style variable. The variables should
compute the x,y,z components of acceleration applied to each particle by the field. Any of the three variables can
be specified as NULL, which means there is no acceleration in that dimension.

Each timestep when a particle is advected the acceleration vector (a) acts as a perturbation on straight-line motion
which affects both the end-of-timestep position (x) and velocity (v) vectors of the particle:

xnew = x + dt*v + 0.5*a*dt^2
vnew = v + dt*a

Note that the formulas encoded by the axvar, ayvar, and azvar variables should produce values that are in units of
acceleration (distance/time^2, see the units command), not force. And they should not include the timestep (dt)
value in the formulas above. That is applied by SPARTA during advection.

See the variable doc page for a description of the formula syntax allowed for particle-style variables. They can
include the particle position, thus enabling a spatially-dependent field. They can include the current timestep and
timestep size (dt) to enable a time-dependent field. And they can include properties of the particle, such as its
mass or magnetic moment.

Note that the global field command provides three alternatives for specifying an external field:

global field constant ... # field is constant in space and time
global field particle ... # field is applied on a per particle basis
global field grid ... # field is applied on a per grid cell basis

This fix is only used for per-particle fields. It should only be used for fields which vary spatially or in time;
otherwise use the constant option which will be much more efficient. The use of per-particle variables allows the
field to vary spatially as a function of particle position. It also allows the field to vary in time by having the
variables use the current timestep. The field can also depend on particle attributes, such as its mass and magnetic
moment (for a B field).

321

https://sparta.github.io

Note that use of the global field particle command with this fix will evaluate the specified particle-style variables
every timestep on all particles. Thus a simulation will typically run several times slower than it would without the
external field.

The fix field/grid command is an alternative which should run faster but be more approximate. When used with
the global field grid command, the grid-style variables it uses are only invoked once as a pre-calculation (for static
fields) or once every N timesteps (for time-varying fields). And the field calculation is done for each grid cell, not
for each particle. The trade-off is that the fields it calculates are based on the grid cell center pint, and thus are not
as accurate as the calucations performed by this fix.

Restart, output info:

No information about this fix is written to binary restart files.

This fix stores a per-particle array of values which can be accessed by various output commands on any timestep,
e.g. by the dump particle command. The values are those produced by evaluating the particle-style variables. The
number of rows in the array is the number of particles this processor owns. The number of columns in the array is
the number of non-NULL variables specified.

Restrictions: none

Related commands:

fix field/grid, global field

Default: none

322

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix grid/check command

fix grid/check/kk command

Syntax:

fix ID grid/check N outflag keyword arg ...

ID is documented in fix command•
grid/check = style name of this fix command•
N = check every N timesteps•
outflag = error or warn or silent•
zero or more keyword/args pairs may be appended•
keyword = outside

 outside arg = yes or no

•

Examples:

fix 1 grid/check 100 error

Description:

Check if particles are inside the grid cell they are supposed to be, based on their current coordinates. This is useful
as a debugging check to insure that no particles have been assigned to the incorrect grid cell during the particle
move stage of the SPARTA timestepping algorithm.

The check is performed once every N timesteps. Particles not inside the correct grid cell are counted and the value
of the count can be monitored (see below). A value of 0 is "correct", meaning that no particle was found outside
its assigned grid cell.

If the outside keyword is set to yes, then a check for particles inside explicit or implicit surfaces is also performed.
If a particle is in a grid cell with surface elements and the particle is "inside" the surfaces, then the error count is
incremented.

If the outflag setting is error, SPARTA will print an error and stop if it finds a particle in an incorrect grid cell or
inside the surface elements. For warn, it will print a warning message and continue. For silent, it will print no
message, but the count of such occurrences can be monitored as described below, e.g. by outputting the value
with the stats command.

IMPORTANT NOTE: Use of outside yes can be expensive if the check is performed frequently (e.g. every step).

Restart, output info:

No information about this fix is written to binary restart files.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the count of
how many particles were not in the correct grid cell. The count is cummulative over all the timesteps the check
was performed since the start of the run. It is initialized to zero each time a run is performed.

323

https://sparta.github.io

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions: none

Related commands: none

Default:

The option default is outside = no.

324

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix halt command

Syntax:

fix ID halt N attribute operator avalue keyword value ...

ID is documented in fix command•
halt = style name of this fix command•
N = check halt condition every N timesteps•
attribute = tlimit or v_name

 tlimit = elapsed CPU time (in seconds)
 v_name = name of equal-style variable

•

operator = "" or ">=" or "==" or "!=" or "|^"•
avalue = numeric value to compare attribute to•
zero or more keyword/value pairs may be appended•
keyword = error or message

 error value = hard or soft or continue
 message value = yes or no

•

Examples:

fix 10 halt 10 tlimit > 3600.0
fix 10 halt 10 v_myCheck != 0 error soft

Description:

Check a condition every N steps during a simulation run. N must be >=1. If the condition is met, exit the run.

The specified attribute can be one of the options listed above, namely tlimit, or an equal-style variable referenced
as v_name, where "name" is the name of a variable that has been defined previously in the input script.

The tlimit attribute queries the elapsed CPU time (in seconds) since the current run began, and sets attribute to
that value. The clock starts at the beginning of the current run (not when the fix command is specified), so that
any setup time for the run is not included in the elapsed time. The timer invocation and syncing across all
processors (via MPI_Allreduce) is performed (typically) only a small number of times and the elapsed times are
used to predict when the end-of-the-run will be. This can be useful when performing benchmark calculations for a
desired length of time with minimal overhead.

Equal-style variables evaluate to a numeric value. See the variable command for a description. They calculate
formulas which can involve mathematical operations, particle properties, grid properties, surface properties,
global values calculated by a compute or fix, or references to other variables. Thus they are a very general means
of computing some attribute of the current system. For example, the following two versions of a fix halt command
will both stop the run after an hour of walltime:

fix 10 halt 10 tlimit > 3600.0

variable cpu equal cpu
fix 10 halt 10 v_cpu > 3600.0

325

https://sparta.github.io

The commands above apply only to the time spent in the current run command. If multiple run commands are
used in the same input script, one can also stop the run after a predetermined amount of total walltime:

variable wall equal wall
fix 10 halt 10 v_wall > 3600.0

Similarly one can stop the run after a predetermined amount of simulation time, which is useful when using a
variable timestep:

variable time equal time
fix 10 halt 10 v_time > 1.0e-3

The choice of operators listed above are the usual comparison operators. The XOR operation (exclusive or) is also
included as "|^". In this context, XOR means that if either the attribute or avalue is 0.0 and the other is non-zero,
then the result is "true". Otherwise it is "false".

The specified avalue must be a numeric value.

The optional error keyword determines how the current run is halted. If its value is hard, then SPARTA will stop
with an error message.

If its value is soft, SPARTA will exit the current run, but continue to execute subsequent commands in the input
script. However, additional run commands will be skipped. For example, this allows a script to output the current
state of the system, e.g. via a write_grid or write_restart command.

If its value is continue, the behavior is the same as for soft, except subsequent run commands are executed. This
allows your script to remedy the condition that triggered the halt, if necessary. Note that you may wish use the
unfix command on the fix halt ID, so that the same condition is not immediately triggered in a subsequent run.

The optional message keyword determines whether a message is printed to the screen and logfile when the halt
condition is triggered. If message is set to yes, a one line message with the values that triggered the halt is printed.
If message is set to no, no message is printed; the run simply exits. The latter may be desirable for post-processing
tools that extract statistical information from log files.

Restart, output info:

No information about this fix is written to binary restart files.

This fix produces no output.

Restrictions: none

Related commands:

run

Default:

The option defaults are error = soft and message = yes.

326

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix move/surf command

fix move/surf/kk command

Syntax:

fix ID move/surf groupID Nevery Nlarge args ...

ID is documented in fix command•
move/surf = style name of this fix command•
group-ID = group ID for which surface elements to move•
Nevery = move surfaces incrementally every this many steps•
Nlarge = move surfaces the entire distance after this many timesteps•
args = all remaining args are identical to those defined for the move_surf command starting with its
"style" argument

•

Examples:

fix 1 move/surf all 100 1000 trans 1 0 0
fix 1 move/surf partial 100 10000 rotate 360 0 0 1 5 5 0 connect yes
fix 1 move/surf object2 100 50000 rotate 360 0 0 1 5 5 0

Description:

This command performs on-the-fly movement of all the surface elements in the specfied group via one of several
styles. See the group surf command for info on how surface elements can be assigned to surface groups. Surface
element moves can also be performed before or between simulations by using the move_surf command.

Moving surfaces during a simulation run can be useful if you want to to track transient changes in a flow while
some attribute of the surface elements change, e.g. the separation between two spheres.

All of the command arguments which appear after Nlarge, which determine how surface elements move, are
exactly the same as for the move_surf command, starting with its style argument. This includes optional keywords
it defines. See its doc page for details.

Nevery specifies how often surface elements are moved incrementally along the path towards their final position.
The current timestep must be a multiple of Nevery.

Nlarge must be a multiple of Nevery and specifies how long it will take the surface elements to move to their final
position.

Thus if Nlarge = 100*Nevery, each surface elements will move 1/100 of its total distance every Nevery steps.

The same rules that the move_surf command follows for particle deletion after surface elements move, are
followed by this command as well. The criteria are applied after every incremental move. This is to prevent
particles from ending up inside surface objects.

Likewise, the connect option of the move_surf command should be used in the same manner by this command if
you need to insure that moving only some elements of an object do not result in a non-watertight surface grid.

327

https://sparta.github.io

Restart, output info:

No information about this fix is written to binary restart files. No global or per-particle or per-grid quantities are
stored by this fix for access by various output commands.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

An error will be generated if any surface element vertex is moved outside the simulation box.

Related commands:

read_surf, move_surf, remove_surf

Default: none

328

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix print command

Syntax:

fix ID print N string keyword value ...

ID is documented in fix command•
print = style name of this fix command•
N = print every N steps•
string = text string to print with optional variable names•
zero or more keyword/value pairs may be appended•
keyword = file or append or screen or title

file value = filename
append value = filename
screen value = yes or no
title value = string

 string = text to print as 1st line of output file

•

Examples:

fix extra print 100 "Coords of marker particle = $x $y $z"
fix extra print 100 "Coords of marker particle = $x $y $z" file coord.txt

Description:

Print a text string every N steps during a simulation run. This can be used for diagnostic purposes or as a
debugging tool to monitor some quantity during a run. The text string must be a single argument, so it should be
enclosed in quotes if it is more than one word. If it contains variables it must be enclosed in quotes to insure they
are not evaluated when the input script line is read, but will instead be evaluated each time the string is printed.

See the variable command for a description of equal style variables which are the most useful ones to use with the
fix print command, since they are evaluated afresh each timestep that the fix print line is output. Equal-style
variables calculate formulas involving mathematical operations, statistical properties, global values calculated by
a compute or fix, or references to other variables.

If the file or append keyword is used, a filename is specified to which the output generated by this fix will be
written. If file is used, then the filename is overwritten if it already exists. If append is used, then the filename is
appended to if it already exists, or created if it does not exist.

If the screen keyword is used, output by this fix to the screen and logfile can be turned on or off as desired.

The title keyword allow specification of the string that will be printed as the first line of the output file, assuming
the file keyword was used. By default, the title line is as follows:

Fix print output for fix ID

where ID is replaced with the fix-ID.

Restart, output info:

329

https://sparta.github.io

No information about this fix is written to binary restart files. No global or per-particle or per-grid quantities are
stored by this fix for access by various output commands.

Restrictions: none

Related commands:

variable, print

Default:

The option defaults are no file output, screen = yes, and title string as described above.

330

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix surf/temp command

Syntax:

fix ID surf/temp surf-ID Nevery source Tinit emisurf custom-name

ID is documented in fix command•
surf/temp = style name of this fix command•
surf-ID = group ID for which surface elements to consider•
Nevery = adjust surface temperature once every Nevery steps•
source = computeID or fixID

 computeID = c_ID or c_ID[N] for a compute that calculates per surf values
 fixID = f_ID or f_ID[N] for a fix that calculates per surf values

•

Tinit = initial temperature of surface (temperature units)•
emisurf = emissivity of the surface (unitless, 0 < emisurf <= 1)•
custom-name = name of a custom per-surf variable to create•

Examples:

compute 1 surf all all etot
fix 1 surf/temp all 1000 c_1 250 0.9 temperature
surf_collide 1 diffuse s_temperature 0.5

Description:

Compute a new temperature for each surface element in the group once every Nevery steps. This command uses a
compute or fix ID which should compute the flux of total energy onto each surface element, e.g. etot from the
compute surf command. Note that SPARTA does not check that the specified compute/fix calculates an energy
flux.

This fix creates a custom per-surf floating point vector with the specified name of custom-name. It can be
accessed by other commands which use the temperature of surface elements. An example is the surf_collide
diffuse command, as shown above.

The per-surface element temperatures computed by this fix can be output via the dump surf command, using its
s_name syntax. See the examples/adjust_temp directory for input scripts that use this fix.

The specified group-ID must be the name of a surface element group, as defined by the group surf command,
which contains a set of surface elements.

The specfied Nevery determines how often the surface temperatures are re-computed.

The source can be specified as a per-surf quantity calculated by a compute, such as the compute surf command.
Or it can be specified a per-surf quantity calculated by a fix, e.g. one which performs time-averaging of per-surf
quantities, such as fix ave/surf.

If the specified source has no bracketed term appended, the compute or fix must calculate a per-surf vector. If
c_ID[N] or f_ID[N] is used, then N must be in the range from 1-M, which will use the Nth column of the
M-column per-surf array calculated by the compute or fix.

331

https://sparta.github.io

The temperature of each surface element is calculated from the Stefan-Boltzmann law for a gray-body as follows:

q_wall = sigma * emisurf * Tsurf^4

where q_wall is the heat flux to the surface (provided by the compute or fix), sigma is the Stefan-Boltzmann
constant appropriate to the units being used, emisurf is the surface emissivity, and Tsurf is the resulting surface
temperature.

The specified emissivity emisurf is a unitless coefficient > 0.0 and <= 1.0, which determines the emissivity of the
surface. An emissivity coefficient of 1.0 means the surface is a black-body that radiates all the energy it receives.

The specified Tinit value is used to set the initial temperature of every surface element in the system. New
temperature values for only the surface elements in the surf-ID group will be reset every Nevery timesteps by the
formula above. Thus temperature values for surfaces not in the surf-ID group will always be Tinit.

Note that commands which use these temperature values can determine which surface element values they access
by their own surf-ID group. E.g. the surf_collide diffuse command is assigned to a group of surface elements via
the surf_modify command. It its Tsurf value is set to the custom vector defined by this fix, then you likely want
the two surface groups to be consistent. Note that it also possible to define multiple surf_collide diffuse and
multiple fix surf/temp commands, each pair of which use a different surface group and different custom per-surf
vector name.

Restart, output info:

No information about this fix is written to binary restart files.

However, the values of the custom particle attribute defined by this fix is written to the restart file. Namely the
floating-point vector of temperature values for each surface with the name assigned by this command. As
explained on the read_restart doc page these values will be re-assigned to surface when a restart file is read. If a
new fix surf/temp command is specified in the restart script as well as a surface collision model which uses the
custom attribute updated by this fix, then the per-surf temperatures and updating process will continue to be used
in the continued run.

No global or per-surf quantities are stored by this fix for access by various output commands.

However, the custom per-surf attribute defined by this fix can be accessed by the dump surf command, as s_name.
That means those per-surf values can be written to surface dump files.

Restrictions:

This fix can only be used in simulations that define explicit surfaces, not for implicit surface models.

Related commands: none

Default: none

332

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix temp/global/rescale command

Syntax:

fix ID temp/global/rescale N Tstart Tstop fraction

ID is documented in fix command•
temp/global/rescale = style name of this fix command•
N = thermostat every N timesteps•
Tstart,Tstop = desired temperature at start/end of run (temperature units)•
fraction = rescale to target temperature by this fraction•

Examples:

fix 1 temp/global/rescale 100 300.0 300.0 0.5
fix 5 temp/global/rescale 10 300.0 10.0 1.0

Description:

Reset the temperature of all the particles in the entire simulation by explicitly rescaling their velocities. This is a
simple thermostatting operation to keep the temperature of the gas near the desired target temperature. This can be
useful if an external driving force is adding energy to the system. Or if you wish the heat or cool the temperature
of the system over time.

The rescaling is applied to only the translational degrees of freedom for the particles. Their rotational or
vibrational degrees of freedom are not altered.

Rescaling is performed every N timesteps. The target temperature is a ramped value between the Tstart and Tstop
temperatures at the beginning and end of the run.

From the current global temperature and the current target temperature, a velocity scale factor is calculated. The
amount of rescaling that is applied is adjusted by the fraction parameter which is a value from 0.0 to 1.0.
difference between the actual and desired temperature. If fraction = 1.0, the temperature is reset to exactly the
desired value. If fraction = 0.5, the temperature is reset to a value halfway between the current global and target
temperatures.

The rescaling factor is applied to each of the components of the translational velocity for every particle in the
simulation.

Note that this fix performs thermostatting using the same formula for temperature as calculated by the compute
temp command. It does not currently subtract out a net streaming velocity to measure a thermal temperature since
it assumes the net center of mass velocity for the entire system is zero. An option for this may be added in the
future. See the fix temp/rescale doc page for a command that thermostats the thermal temperature on a
per-grid-cell basis.

Restart, output info:

No information about this fix is written to binary restart files.

This fix produces no output.

333

https://sparta.github.io

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

Restrictions: none

Related commands:

fix temp/rescale

Default: none

334

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix temp/rescale command

fix temp/rescale/kk command

Syntax:

fix ID temp/rescale N Tstart Tstop keyword value ...

ID is documented in fix command•
temp/rescale = style name of this fix command•
N = thermostat every N timesteps•
Tstart,Tstop = desired temperature at start/end of run (temperature units)•
zero or more keyword/args pairs may be appended•
keyword = ave

 ave values = yes or no

•

Examples:

fix 1 temp/rescale 100 300.0 300.0
fix 5 temp/rescale 10 300.0 10.0 ave yes

Description:

Reset the thermal temperature of all the particles within each grid cell by explicitly rescaling their thermal
velocities. This is a simple thermostatting operation to keep the thermal temperature of the gas near the desired
target temperature. This can be useful if an external driving force is adding energy to the system. Or if you wish
the thermal temperature of the system to heat or cool over time.

The rescaling is applied to only the translational degrees of freedom for the particles. Their rotational or
vibrational degrees of freedom are not altered.

Rescaling is performed every N timesteps. The target temperature (Ttarget) is a ramped value between the Tstart
and Tstop temperatures at the beginning and end of the run.

This fix performs thermostatting on a per grid cell basis. For each grid cell, the center-of-mass velocity and
thermal temperature of the particles in the grid cell is computed. The thermal temperature is defined as the kinetic
temperature after any center-of-mass motion (e.g. a flow velocity) is subtracted from the collection of particles in
the grid cell. These are the same calculations as are performed by the compute thermal/grid command. See its doc
page for the equations. See the fix temp/global/rescale doc page for a command that thermostats the temperature
of the global system.

How the rescaling of particle velocities is done depends on the value of the ave keyword.

For ave with a value no (the default), the thermal temperature (Tthermal) of each cell is used to compute a
velocity scale factor for that cell, which is

vscale = sqrt(Ttarget/Tthermal)

The vscale factor is applied to each of the components of the thermal velocity for each particle in the grid cell.
Only cells with 2 or more particles have their particle velocities rescaled.

335

https://sparta.github.io

For ave with a value yes, the thermal temperatures of all the cells are averaged. The average thermal temperature
is simply the sum of cell thermal temperatures divided by the number of cells. Cells with less than 2 particles or
whose thermal temperature = 0.0 contribute a thermal temperaure = Ttarget to the average. The average thermal
temperature (Tthermal_ave) for all cells is used to compute a velocity scale factor for all cells, which is

vscale = sqrt(Ttarget/Tthermal_ave)

This single vscale factor is applied to each of the components of the thermal velocity for each particle in all the
grid cells, including the particles in single-particle cells.

After rescaling, for either ave = no or yes, if the thermal temperature were re-computed for any grid cell with
more than one particle, it would be exactly the target temperature.

Restart, output info:

No information about this fix is written to binary restart files.

This fix produces no output.

This fix can ramp its target temperature over multiple runs, using the start and stop keywords of the run
command. See the run command for details of how to do this.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions: none

Related commands:

fix temp/global/rescale

Default:

The default is ave = no.

336

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

fix vibmode command

Syntax:

fix ID vibmode

ID is documented in fix command•
vibmode = style name of this fix command•

Examples:

fix 1 vibmode

Description:

Enable multiple vibrational energy levels, defined on a per-species basis, to be used in a simulation. This fix is
meant to be used with the collide_modify vibrate discrete setting which means that the vibrational energy of each
(non-monoatomic) particle is discretized across one or more energy modes, each with its own characteristic
vibrational temperature. This fix allocates per-particle storage for the mode indices and also has code to populate
the multiple levels appropriately when particles are created. Collisions between pairs of particles will then transfer
energy between the different modes of the two particles.

An overview of how to run simulations with multiple vibrational energy modes is given in the Section 4.12. This
includes use of the species command with its vibfile option, and the use of the collide_modify vibrate discrete
command. The section also lists all the commands that can be used in an input script to invoke various options
associated with the vibrational energy modes. All of them depend on this fix vibmode command being defined.

Internally, this fix defines a custom particle attribute named "vibmode". It is an integer array with N values per
particle. N is the maximum number of energy modes for any species defined in the simulation. The number of
energy modes is half the vibrational degrees of freedom defined for each species. See the "species" command for
how the degrees of freedom and associated vibrational temperatures and other properties are defined for each
mode for each species.

Each of the N values is an integer count for the

Restart, output info:

No information about this fix is written to binary restart files.

However, the values of the custom particle attribute defined by this fix are written to the restart file. Namely the
integer values stored in "vibmode" for each particle. As explained on the read_restart doc page these values can
be re-assigned to particles when a restart file is read, if a new fix vibmode command is specified in the restart
script before the first run command is used.

No global or per-particle or per-grid quantities are stored by this fix for access by various output commands.

However, the custom particle attributes defined by this fix can be accessed by the dump particle command, as
p_vibmode. That means those per-particle values can be written to particle dump files.

Restrictions:

337

https://sparta.github.io

This fix is required if "collide_modify vibrate discrete" is used and there is one or more species defined which
haave multiple vibrational energy modes (2 or more). In this scenario, if it is not defined, an error will occur when
a "create_particles" or run command is issued. Conversely, if no species has multiple vibrational modes, this fix
cannot be used.

Defining this fix after particles have been created will not populate the vibrational energy modes of particles that
already exist. An exception is if the read_restart command is used to read in particles from a previous simulation
where this fix was used. In that case, defining this fix after reading the restart file will enable the particles to keep
their previous vibrational energy mode values.

Related commands:

collide_modify vibrate discrete

Default: none

338

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

global command

Syntax:

global keyword values ...

one or more keyword/value pairs•
keyword = fnum or nrho or vstream or temp or field or surfs or surfgrid or surfmax or splitmax or surftally
or gridcut or comm/sort or comm/style or weight or particle/reorder or mem/limit

fnum value = ratio
 ratio = Fnum ratio of physical particles to simulation particles

nrho value = density
 density = number density of background gas (# per length^3 units)

vstream values = Vx Vy Vz
 Vx,Vy,Vz = streaming velocity of background gas (velocity units)

temp values = thermal
 thermal = temperature of background gas (temperature units)

field values = fstyle args
 fstyle = none or constant or variable or grid

field arg = none
constant args = mag ex ey ez

 mag = magnitude of field acceleration (acceleration units)
 ex,ey,ez = direction vector which the field acts along

particle arg = fixID
 fixID = ID of fix that computes per particle field components

grid args = fixID Nfreq
 fixID = ID of fix that computes per grid cell field components
 Nfreq = update field values every this many timesteps

surfs value = explicit or explicit/distributed or implicit
 explicit = surfs defined in read_surf file, each proc owns copy of all surfs
 explicit/distributed = surfs defined in read_surf file, each proc owns
 only the surfs for its owned_ghost grid cells
 implicit = surfs defined in read_isurf file, each proc owns
 only the surfs for its owned+ghost grid cells

surfgrid value = percell or persurf or auto
 percell = loop over my cells and check every surf
 persurf = loop over my surfs and cells they overlap
 auto = choose percell or persurf based on surface element and proc count

surfmax value = Nsurf
 Nsurf = max # of surface elements allowed in single grid cell

splitmax value = Nsplit
 Nsplit = max # of sub-cells one grid cell can be split into by surface elements

surftally value = reduce or rvous or auto
 reduce = tally surf collision info via MPI_Allreduce operations
 rvous = tally via a rendezvous algorithm
 auto = choose reduce or rvous based on surface element and proc count

gridcut value = cutoff
 cutoff = acquire ghost cells up to this far away (distance units)

comm/sort value = yes or no
 yes/no = sort incoming messages by proc ID if yes, else no sort

comm/style value = neigh or all
 neigh = setup particle comm with subset of near-neighbor processor
 all = allow particle comm with potentially any processor

weight value = wstyle mode
 wstyle = cell
 mode = none or volume or radius or radius/only

particle/reorder value = nsteps
 nsteps = reorder the particles every this many timesteps

•

339

https://sparta.github.io

mem/limit value = grid or bytes
 grid = limit extra memory for load-balancing, particle reordering, and restart file read/write to grid cell memory
 bytes = limit extra particle memory to this amount (in MBytes)

optmove value = yes or no
 yes/no = use optimized particle move if yes, else use regular move

Examples:

global fnum 1.0e20
global vstream 100.0 0 0 fnum 5.0e18
global temp 1000
global weight cell radius
global mem/limit 100
global field constant 9.8 0 0 1

Description:

Define global properties of the system.

The fnum keyword sets the ratio of real, physical molecules to simulation particles. E.g. a value of 1.0e20 means
that one particle in the simulation represents 1.0e20 molecules of the particle species.

The nrho keyword sets the number density of the background gas. For 3d simulations the units are #/volume. For
2d, the units are effectively #/area since the z dimension is treated as having a length of 1.0.

Assuming your simulation is populated by particles from the background gas, the fnum and nrho settings can
determine how many particles will be present in your simulation, when using the create_particles or fix emit
command variants.

The vstream keyword sets the streaming velocity of the background gas.

The temp keyword sets the thermal temperature of the background gas. This is a Gaussian velocity distribution
superposed on top of the streaming velocity.

The field keyword adds an additional external field term which can included in the motion of particles. The fstyle
argument can be none or constant, particle, or grid. Note that only one of these can be set by the global command.
If the field keyword is specified multiple times, only the last one has an effect.

The none setting turns off any external field setting previously specified. It is the default.

The constant setting is for a field that has no spatial or time dependence; the same field vector acts on all
particles. Gravity is an example of a constant external field. The mag arguement sets the magnitude of the field.
The (ex,ey,ez) components specify the direction the field acts in. The components do not need to be a unit vector;
the code converts them into a unit vector internally. Note that a z-component cannot be used for 2d simulations.

The particle setting is for a field that is computed on a per particle basis, depending on the position or other
attributes of each particle. A spatially- or time-dependent magnetic field, acting on the magnetic moment of each
particle, is an example of a variable external field. The fixID argument is the ID of a fix which computes the
components of the field vector for each particle. These may alter both the position and velocity of each particle
when it is advected each timestep.

See the doc page for the fix field/particle command for the only current fix in SPARTA which is compatible with
the particle setting.

340

The grid setting is for a field that is computed on a per grid cell basis and applied to all the particles in the grid
cell. A spatially- or time-dependent magnetic field which is coarsened to act at the resolution of grid cells is an
example of a per grid cell external field. The fixID argument is the ID of a fix which computes the components of
the field vector for each grid cell. These may alter both the position and velocity or particles in the grid cell when
they are advected each timestep. The Nfreq argument specifies how often to re-compute the per grid cell field
vectors. For a field that has no time dependence you should set Nfreq to zero; the field will only be computed
once at the beginning of each simulation run. For a field with time-dependence you can choose how often to
recompute the field, depending on how fast it varies.

See the doc page for the fix field/grid command for the only current fix in SPARTA which is compatible with the
grid setting.

Note that there is a tradeoff between the particle and grid options. For the particle option the field must be
computed every timestep for all particles; the field values are accurately computed at precisely each particle's
position but it is an expensive operation. For the grid option the field is only computed once at the beginning of a
run or once every Nfreq timesteps. Even if it is computed every timestep, the number of grid cells is typically
much smaller than the number of particles. However the accuracy of the field applied to each particle is more
approximate than for the particle option. This is because the field applied to each particle is the value it has at the
center of the particle's grid cell.

The surfs keyword determines what kind of surface elements SPARTA uses and how they are distributed across
processors. Possible values are explicit, explicit/distributed, and implicit. See the Howto 6.13 section of the
manual for an explantion of explicit versus implicit surfaces. The distributed option can be important for models
with huge numbers of surface elements. Each processor stores copies of only the surfaces that overlap grid cells it
owns or has ghost copies of. Implicit surfaces are always distributed. The explicit setting is the default and means
each processor stores a copy of all the defined surface elements. Note that a surface element requires about 100
bytes of storage, so storing a million on a single processor requires about 100 MBytes.

The surfgrid keyword determines what algorithm is used to enumerate the overlaps (intersections) between grid
cells and surface elements (lines in 2d, triangles in 3d). The possible settings are percell, persurf, and auto. The
auto setting is the default and will choose between a percell or persurf algorithm based on the number of surface
elements and processor count. If there are more processors than surface elements, the percell algorithm is used.
Otherwise the persurf algorithm is used. The percell algorithm loops over the subset of grid cells each processor
owns. All the surface elements are tested for overlap with each owned grid cell. The persurf algorithm loops over
a 1/P fraction of surface elements on each processor. The bounding box around each surface is used to find all
grid cells it possibly overlaps. For large numbers of surface elements or processors, the persurf algorithm is
generally faster.

The surfmax keyword determines the maximum number of surface elements (lines in 2d, triangles in 3d) that can
overlap a single grid cell. The default is 100, which should be large enough for any simulation, unless you define
very coarse grid cells relative to the size of surface elements they contain.

The splitmax keyword determines the maximum number of sub-cells a single grid cell can be split into as a result
of its intersection with multiple surface elements (lines in 2d, triangles in 3d). The default is 10, which should be
large enough for any simulation, unless you embed a complex-shaped surface object into one or a very few grid
cells.

The surftally keyword determines what algorithm is used to combine tallies of surface collisions across processors
that own portions of the same surface element. The possible settings are reduce, rvous, and auto. The auto setting
is the default and will choose between a reduce or rvous algorithm based on the number of surface elements and
processor count. If there are more processors than surface elements, the reduce algorithm is used. Otherwise the
rvous algorithm is used. The reduce algorithm is suitable for relatively small surface elememt counts. It creates a

341

copy of a vector or array of length the global number of surface elements. Each processor sums its tally
contributions into the vector or array. An MPI_Allreduce() is performed to sum it across all processors. Each
processor than extracts values for the N/P surfaces it owns. The rvous algorithm is faster for large surface element
counts. A rendezvous style of communication is performed where every processor sends its tally contributions
directly to the processor which owns the element as one of its N/P elements.

The gridcut keyword determines the cutoff distance at which ghost grid cells will be stored by each processor.
Assuming the processor owns a compact clump of grid cells (see below), it will also store ghost cell information
from nearby grid cells, up to this distance away. If the setting is -1.0 (the default) then each processor owns a
copy of ghost cells for all grid cells in the simulation. This can require too much memory for large models. If the
cutoff is 0.0, processors own a minimal number of ghost cells. This saves memory but may require multiple
passes of communication each timestep to move all the particles and migrate them to new owning processors.
Typically a cutoff the size of 2-3 grid cell diameters is a good compromise that requires only modest memory to
store ghost cells and allows all particle moves to complete in only one pass of communication.

An example of the gridcut cutoff applied to a clumped assignment is shown in this zoom-in of a 2d hierarchical
grid with 5 levels, refined around a tilted ellipsoidal surface object (outlined in pink). One processor owns the grid
cells colored orange. A bounding rectangle around the orange cells, extended by a short cutoff distance, is drawn
as a purple rectangle. The rectangle contains only a few ghost grid cells owned by other processors.

IMPORTANT NOTE: Using the gridcut keyword with a cutoff >= 0.0 is only allowed if the grid cells owned by
each processor are "clumped". If each processor's grid cells are "dispersed", then ghost cells cannot be created
with a gridcut cutoff >= 0.0. Whenever ghost cells are generated, a warning to this effect will be triggered. At a
later point when surfaces are read in or a simulation is performed, an error will result. The solution is to use the
balance_grid command to change to a clumped grid cell assignment. See Section 6.8 of the manual for an
explanation of clumped and dispersed grid cell assignments and their relative performance trade-offs.

IMPORTANT NOTE: If grid cells have already been defined via the create_grid, read_grid, or read_restart
commands, when the gridcut cutoff is specified, then any ghost cell information that is currently stored will be
erased. As discussed in the preceeding paragraph, a balance_grid command must then be invoked to regenerate
ghost cell information. If this is not done before surfaces are read in or a simulation is performed, an error will
result.

The comm/sort keyword determines whether the messages a proc receives for migrating particles (every step) and
ghost grid cells (at setup and after re-balance) are sorted by processor ID. Doing this requires a bit of overhead,
but can make it easier to debug in parallel, because simulations should be reproducible when run on the same
number of processors. Without sorting, messages may arrive in a randomized order, which means lists of particles
and grid cells end up in a different order leading to statistical differences between runs.

The comm/style keyword determines the style of particle communication that is performed to migrate particles
every step. The most efficient method is typically for each processor to exchange messages with only the

342

processors it has ghost cells for, which is the method used by the neigh setting. The all setting performs a
relatively cheap, but global communication operation to determine the exact set of neighbors that need to be
communicated with at each step. For small processor counts there is typically little difference. On large processor
counts the neigh setting can be significantly faster. However, if the flow is streaming in one dominant direction,
there may be no particle migration needed to upwind processors, so the all method can generate smaller counts of
neighboring processors.

Note that the neigh style only has an effect (at run time) when the grid is decomposed by the RCB option of the
balance or fix balance commands. If that is not the case, SPARTA performs the particle communication as if the
all setting were in place.

The weight keyword determines whether particle weighting is used. Currently the only style allowed, as specified
by wstyle = cell, is per-cell weighting. This is a mechanism for inducing every grid cell to contain roughly the
same number of particles (even if cells are of varying size), so as to minimize the total number of particles used in
a simulation while preserving accurate time and spatial averages of flow quantities. The cell weights also affect
how many particles per cell are created by the create_particles and fix emit command variants.

If the mode is set to none, per-cell weighting is turned off if it was previously enabled. For mode = volume or
radius or radius/only, per-cell weighting is enabled, which triggers two computations. First, at the time this
command is issued, each grid cell is assigned a "weight" which is calculated based either on the cell volume or
radius, as specified by the mode setting. For the volume setting, the weight of a cell is its 3d volume for a 3d
model, and the weight is its 2d area for a 2d model. For an axi-symmetric model, the weight is the 3d volume of
the 2d axi-symmetric cell, i.e. the volume the area sweeps out when rotated around the y=0 axis of symmetry. The
radius and radius/only settings are only allowed for axisymmetric systems. For the radius option, the weight is
the distance the cell midpoint is from the y=0 axis of symmetry, multiplied by the length of the cell in the x
direction. This mode attempts to preserve a uniform number of particles in each cell, regardless of the cell area,
for a uniform targeted density. For the radius/only option, the weight is just the distance the cell midpoint is from
the y=0 axis of symmetry. This mode attempts to preserve a uniform distribution of particles per unit area, for a
uniform targeted density. See Section 6.2 for more details on axi-symmetric models.

Second, when a particle moves from an initial cell to a final cell, the initial/final ratio of the two cell weights is
calculated. If the ratio > 1, then additional particles may be created in the final cell, by cloning the attributes of the
incoming particle. E.g. if the ratio = 3.4, then two extra particle are created, and a 3rd is created with probability
0.4. If the ratio < 1, then the incoming particle may be deleted. E.g. if the ratio is 0.7, then the incoming particle is
deleted with probability 0.3.

Note that the first calculation of weights is performed whenever the global weight command is issued. If particles
already exist, they are not cloned or destroyed by the new weights. The second calculation only happens when a
simulation is run.

The particle/reorder keyword determines how often the list of particles on each processor is reordered to store
particles in the same grid cell contiguously in memory. This operation is performed every nsteps as specified. A
value of 0 means no reordering is ever done. This option is only available when using the KOKKOS package and
can improve performance on certain hardware such as GPUs, but is typically slower on CPUs except when
running on thousands of nodes. Reordering requires sorting the particles, which is done automatically when
collisions are enabled. If collisions are not enabled, then sorting will also be performed in addition to reordering.

The mem/limit keyword limits the amount of memory allocated for several operations: load balancing, reordering
of particles, and restart file read/write. This should only be necessary for very large simulations where the
memory footprint for particles and grid cells is a significant fraction of available memory. In this case, these
operations can trigger a memory error due to the additional memory they require. Setting a limit on the memory
size will perform these operations more incrementally so that memory errors do not occur.

343

A load-balance operation can use as much as 3x more memory than the memory used to store particles (reported
by SPARTA when a simulation begins). Particle reordering temporarily doubles the memory needed to store
particles because it is performed out-of-place by default. Reading and writing restart files also requires temporary
buffers to hold grid cells and particles and can double the memory required.

Specifying the value for mem/limit as grid, will allocate extra memory limited to the size of memory for storing
grid cells on each processor. For most simulations this is typically much smaller than the memory used to store
particles. Specifying a numeric value for bytes will allocate extra memory limited to that many MBytes on each
processor. Bytes can be specified as a floating point value or an integer, e.g. 0.5 if you want to use 1/2 MByte of
extra memory or 100 for a 100 MByte buffer. Specifying a value of 0 (the default) means no limit is used. The
value used for mem/limit must not exceed 2GB or an error will occur.

For load-balancing, the communication of grid and particle data to new processors will then be performed in
multiple passes (if necessary) so that only a portion of grid cells and their particles which fit into the extra
memory are migrated in each pass. Similarly for particle reordering, multiple passes are performed using the extra
memory to reorder the particles nearly in-place. For reading/writing restart files, multiple passes are used to read
from or write to the restart file as well. For reading restart files, this option is ignored unless reading from
multiple files (i.e. a "%" character was used in the command to write out the restart) and the number of MPI ranks
is greater than the number of files.

Note that for these operations if the extra memory is too small, performance will suffer due to the large number of
multiple passes required.

If the optmove keyword is set to yes then an optimized move algorithm will be used when possible. Normally, as
particles advect through the mesh each intermediate grid cell crossing must be found since the particle may
encounter a box boundary or surface element. However, if there are no surfaces and the grid is uniform (only a
single level for all cells without further refinement) and the optmove keyword is set to yes then the particle will be
moved to its final position in a single step, skipping all intermediate grid cell crossings, which can improve
performance. If a particle hits a box boundary or leaves the owning proc's subdomain (including the ghost cell
region), then the normal (non-optimized) move algorithm will be used for that specific particle on that timestep.
The optmove yes option cannot be used when surfaces are defined, the grid is not uniform, or when fix adapt is
enabled, otherwise an error will result.

Restrictions:

The global surfmax command must be used before surface elements are defined, e.g. via the read_surf command.

Related commands:

mixture

Default:

The keyword defaults are fnum = 1.0, nrho = 1.0, vstream = 0.0 0.0 0.0, temp = 273.15, field = none, surfs =
explicit, surfgrid = auto, surfmax = 100, splitmax = 10, surftally = auto, gridcut = -1.0, comm/sort = no,
comm/style = neigh, weight = cell none, particle/reorder = 0, mem/limit = 0, optmove = no.

344

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

group command

Syntax:

group ID which style args

ID = user-defined name of the grid or surface group•
which = grid or surf•
style options for which = grid: region or subtract or union or intersect or clear•
style options for which = surf: type or id or region or subtract or union or intersect or clear

type or id args
 args = list of one or more surface element types or IDs
 any entry in list can be a range formatted as A:B
 A = starting index, B = ending index
 args = logical value
 logical = "

•

Examples:

group sphere surf type 1 3
group sphere surf id 50 100:150
group sphere surf id <= 1000
group sphere surf id 50 250
group patch grid region leftedge all
group patch surf region cutout center
group boundary surf subtract all a2 a3
group boundary grid union lower upper
group boundary surf union lower upper
group boundary surf intersect upper leftside

Description:

Assign grid cells to grid groups or surface elements to surface groups. In SPARTA, a "grid group" is a collection
of one or more grid cells. A "surface group" is a collection of one or more surface elements (line segements in 2d,
triangles in 3d). Other commands take group IDs as arguments so that they act on a set of grid cells or surface
elements. For example, see the compute grid, compute surf, fix ave/grid, fix ave/surf, dump grid, or dump surf
commands.

An individual grid cell can belong to multiple grid groups. An individual surface element can belong to multiple
surface groups. Each grid or surface group has a name which is specified as the ID in this command. Each grid
group and surface group ID must be unique, though the same ID can be used for both a grid and surface group.
IDs can only contain alphanumeric characters and underscores.

If the specified group ID already exists, grid cells or surface elements are added to the group. Otherwise a new
group is created. This means the group command can be used multiple times with the same group ID to
incrementally add grid cells or surface elements to the group.

A grid group with the ID all is pre-defined. All grid cells belong to this group. Likewise, a surface group with the
ID all is pre-defined. All surface elements belong to this group.

After this command has performed its grid cell or surface elements assignments, statistics about the group are
printed to the screen, so that you can check if the command operated as you expect.

345

https://sparta.github.io

Note that this command assigns all flavors of child grid cells to groups, which includes unsplit, cut, split, and sub
cells. See Section 6.8 of the manual gives details of how SPARTA defines child, unsplit, split, and sub cells.

The following styles can be used for grid groups.

The region style puts all grid cells in the region volume associated with the region-ID into the group. See the
region command for details on what kind of geometric regions can be defined. Note that the side option for the
region command can be used to define whether the inside or outside of the geometric region is considered to be
"in" the region.

The rflag setting determines how a grid cell is judged to be in the region or not. For rflag = one, it is in the region
if any of its corner points (4 for 2d, 8 for 3d) is in the region. For rflag = all, all its corner points must be in the
region. For rflag = center, the center point of the grid cell must be in the region.

The following styles can be used for surface groups.

The type and id styles put all surface elements with the specified types or surface element IDs into the group.
These two styles can use arguments specified in one of two formats.

For surface elements, the "type" of each element is defined when the elements are read from a surface file, via the
read_surf command. In the file, a positive integer type value can be optionally defined for each element (default =
1). The specified type values can also be incremented using the typeadd keyword of the read_surf commmand.

For surface elements, the "ID" of each element is simply its index from 1 to N, for all N surface elements that
have been read in via the read_surf command. The ordering of IDs is determined by the order the elements appear
in the read-in surface file. If multiple files are read (or the same file multiple times), IDs increase monotonically
each time new surface elements are added.

The first format is a list of values (types or IDs). For example, the first command in the examples above puts all
surface elements of type 1 and 3 into the group named sphere. Each entry in the list can optionally be a
colon-separated range A:B, as in the second axample above. A "range" is a series of values (types or IDs). The
second example with 100:150 adds all surface elements with IDs from 100 to 150 (inclusive) to the group named
sphere, along with element 50 since it also appears in the list of values.

The second format is a logical operator followed by one or two values (type or ID). The 7 valid logicals are listed
above. All the logicals except "" take a single argument. The third example above adds all surface elements with
IDs from 1 to 1000 to the group named sphere. The logical "" means "between" and takes 2 arguments. The fourth
example above adds all surface elements IDs from 50 to 250 (inclusive) to the group named sphere.

The region style puts all surface elements in the region volume associated with the region-ID into the group. See
the region command for details on what kind of geometric regions can be defined. Note that the side option for the
region command can be used to define whether the inside or outside of the geometric region is considered to be
"in" the region.

The rflag setting determines how a surface element is judged to be in the region or not. For rflag = one, it is in the
region if any of its corner points (3 for triangle, 2 for line) is in the region. For rflag = all, all its corner points
must be in the region. For rflag = center, the center point of the line segment or centroid point of the triangle must
be in the region.

The following styles can be used for either grid or surface groups.

346

The subtract style takes a list of two or more existing group names as arguments. All grid cells or surface
elements that belong to the 1st group, but not to any of the other groups are added to the specified group.

The union style takes a list of one or more existing group names as arguments. All grid cells or surface elements
that belong to any of the listed groups are added to the specified group.

The intersect style takes a list of two or more existing group names as arguments. Grid cells or surface elements
that belong to every one of the listed groups are added to the specified group.

The clear style un-assigns all grid cells or surface elements that were assigned to that group. This is a way to
empty a group before adding more grid cells or surface elements to it.

Restrictions:

No more than 32 grid groups and no more than 32 surface groups can be defined, including "all".

Related commands:

dump, region, compute grid, compute surf

Default:

All grid cells belong to the "all" grid group. All surface elements belong to the "all" surface group.

347

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

if command

Syntax:

if boolean then t1 t2 ... elif boolean f1 f2 ... elif boolean f1 f2 ... else e1 e2 ...

boolean = a Boolean expression evaluated as TRUE or FALSE (see below)•
then = required word•
t1,t2,...,tN = one or more SPARTA commands to execute if condition is met, each enclosed in quotes•
elif = optional word, can appear multiple times•
f1,f2,...,fN = one or more SPARTA commands to execute if elif condition is met, each enclosed in quotes
(optional arguments)

•

else = optional argument•
e1,e2,...,eN = one or more SPARTA commands to execute if no condition is met, each enclosed in quotes
(optional arguments)

•

Examples:

if "${steps} > 1000" then quit
if "${myString} == a10" then quit
if "$x <= $y" then "print X is smaller = $x" else "print Y is smaller = $y"
if "(${eng} > 0.0) || ($n <1000)" then &
 "timestep 0.005" &
elif $n

Description:

This command provides an in-then-else capability within an input script. A Boolean expression is evaluted and
the result is TRUE or FALSE. Note that as in the examples above, the expression can contain variables, as
defined by the variable command, which will be evaluated as part of the expression. Thus a user-defined formula
that reflects the current state of the simulation can be used to issue one or more new commands.

If the result of the Boolean expression is TRUE, then one or more commands (t1, t2, ..., tN) are executed. If it is
FALSE, then Boolean expressions associated with successive elif keywords are evaluated until one is found to be
true, in which case its commands (f1, f2, ..., fN) are executed. If no Boolean expression is TRUE, then the
commands associated witht the else keyword, namely (e1, e2, ..., eN), are executed. The elif and else keywords
and their associated commands are optional. If they aren't specified and the initial Boolean expression is FALSE,
then no commands are executed.

The syntax for Boolean expressions is described below.

Each command (t1, f1, e1, etc) can be any valid SPARTA input script command, except an include command,
which is not allowed. If the command is more than one word, it must enclosed in quotes, so it will be treated as a
single argument, as in the examples above.

IMPORTANT NOTE: If a command itself requires a quoted argument (e.g. a print command), then double and
single quotes can be used and nested in the usual manner, as in the examples above and below. See Section
commands 2 of the manual for more details on using quotes in arguments. Only one of level of nesting is allowed,
but that should be sufficient for most use cases.

348

https://sparta.github.io

Note that by using the line continuation character "&", the if command can be spread across many lines, though it
is still a single command:

if "$a <$b" then &
 "print 'Minimum value = $a'" &
 "run 1000" &
else &
 'print "Minimum value = $b"' &
 "run 50000"

Note that if one of the commands to execute is quit, as in the first example above, then executing the command
will cause SPARTA to halt.

Note that by jumping to a label in the same input script, the if command can be used to break out of a loop. See
the variable delete command for info on how to delete the associated loop variable, so that it can be re-used later
in the input script.

Here is an example of a double loop which uses the if and jump commands to break out of the inner loop when a
condition is met, then continues iterating thru the outer loop.

label loopa
variable a loop 5
 label loopb
 variable b loop 5
 print "A,B = $a,$b"
 run 10000
 if '$b > 2' then "print 'Jumping to another script'" "jump in.script break"
 next b
 jump in.script loopb
label break
variable b delete

next a
jump in.script loopa

The Boolean expressions for the if and elif keywords have a C-like syntax. Note that each expression is a single
argument within the if command. Thus if you want to include spaces in the expression for clarity, you must
enclose the entire expression in quotes.

An expression is built out of numbers (which start with a digit or period or minus sign) or strings (which start with
a letter and can contain alphanumeric characters or underscores):

0.2, 100, 1.0e20, -15.4, etc
InP, myString, a123, ab_23_cd, etc

and Boolean operators:

A == B, A != B, A <B, A <= B, A > B, A >= B, A && B, A || B, !A

Each A and B is a number or string or a variable reference like $a or ${abc}, or A or B can be another Boolean
expression.

If a variable is used it can produce a number when evaluated, like an equal-style variable. Or it can produce a
string, like an index-style variable. For an individual Boolean operator, A and B must both be numbers or must
both be strings. You cannot compare a number to a string.

349

Expressions are evaluated left to right and have the usual C-style precedence: the unary logical NOT operator "!"
has the highest precedence, the 4 relational operators "", and ">=" are next; the two remaining relational operators
"==" and "!=" are next; then the logical AND operator "&&"; and finally the logical OR operator "||" has the
lowest precedence. Parenthesis can be used to group one or more portions of an expression and/or enforce a
different order of evaluation than what would occur with the default precedence.

When the 6 relational operators (first 6 in list above) compare 2 numbers, they return either a 1.0 or 0.0 depending
on whether the relationship between A and B is TRUE or FALSE. When the 6 relational operators compare 2
strings, they also return a 1.0 or 0.0 for TRUE or FALSE, but the comparison is done by the C function strcmp().

When the 3 logical operators (last 3 in list above) compare 2 numbers, they also return either a 1.0 or 0.0
depending on whether the relationship between A and B is TRUE or FALSE (or just A). The logical AND
operator will return 1.0 if both its arguments are non-zero, else it returns 0.0. The logical OR operator will return
1.0 if either of its arguments is non-zero, else it returns 0.0. The logical NOT operator returns 1.0 if its argument
is 0.0, else it returns 0.0. The 3 logical operators can only be used to operate on numbers, not on strings.

The overall Boolean expression produces a TRUE result if the result is non-zero. If the result is zero, the
expression result is FALSE.

Restrictions: none

Related commands:

variable, print

Default: none

350

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

include command

Syntax:

include file

file = filename of new input script to switch to•

Examples:

include newfile
include in.run2

Description:

This command opens a new input script file and begins reading SPARTA commands from that file. When the new
file is finished, the original file is returned to. Include files can be nested as deeply as desired. If input script A
includes script B, and B includes A, then SPARTA could run for a long time.

If the filename is a variable (see the variable command), different processor partitions can run different input
scripts.

Restrictions: none

Related commands:

variable, jump

Default: none

351

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

jump command

Syntax:

jump file label

file = filename of new input script to switch to•
label = optional label within file to jump to•

Examples:

jump newfile
jump in.run2 runloop
jump SELF runloop

Description:

This command closes the current input script file, opens the file with the specified name, and begins reading
SPARTA commands from that file. Unlike the include command, the original file is not returned to, although by
using multiple jump commands it is possible to chain from file to file or back to the original file.

If the word "SELF" is used for the filename, then the current input script is re-opened and read again.

IMPORTANT NOTE: The SELF option is not guaranteed to work when the current input script is being read
through stdin (standard input), e.g.

spa_g++ <in.script

since the SELF option invokes the C-library rewind() call, which may not be supported for stdin on some systems
or by some MPI implementations. This can be worked around by using the -in command-line argument, e.g.

spa_g++ -in in.script

or by using the -var command-line argument to pass the script name as a variable to the input script. In the latter
case, a variable called "fname" could be used in place of SELF, e.g.

spa_g++ -var fname in.script <in.script

The 2nd argument to the jump command is optional. If specified, it is treated as a label and the new file is scanned
(without executing commands) until the label is found, and commands are executed from that point forward. This
can be used to loop over a portion of the input script, as in this example. These commands perform 10 runs, each
of 10000 steps, and create 10 dump files named file.1, file.2, etc. The next command is used to exit the loop after
10 iterations. When the "a" variable has been incremented for the tenth time, it will cause the next jump command
to be skipped.

variable a loop 10
label loop
dump 1 grid all 100 file.$a
run 10000
undump 1
next a
jump in.flow loop

352

https://sparta.github.io

If the jump file argument is a variable, the jump command can be used to cause different processor partitions to
run different input scripts. In this example, SPARTA is run on 40 processors, with 4 partitions of 10 procs each.
An in.file containing the example variable and jump command will cause each partition to run a different
simulation.

mpirun -np 40 lmp_ibm -partition 4x10 -in in.file

variable f world script.1 script.2 script.3 script.4
jump $f

Here is an example of a double loop which uses the if and jump commands to break out of the inner loop when a
condition is met, then continues iterating thru the outer loop.

label loopa
variable a loop 5
 label loopb
 variable b loop 5
 print "A,B = $a,$b"
 run 10000
 if $b > 2 then "jump in.script break"
 next b
 jump in.script loopb
label break
variable b delete

next a
jump in.script loopa

Restrictions:

If you jump to a file and it does not contain the specified label, SPARTA will come to the end of the file and exit.

Related commands:

variable, include, label, next

Default: none

353

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

label command

Syntax:

label ID

ID = string used as label name•

Examples:

label xyz
label loop

Description:

Label this line of the input script with the chosen ID. Unless a jump command was used previously, this does
nothing. But if a jump command was used with a label argument to begin invoking this script file, then all
command lines in the script prior to this line will be ignored. I.e. execution of the script will begin at this line.
This is useful for looping over a section of the input script as discussed in the jump command.

Restrictions: none

Related commands: none

Default: none

354

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

log command

Syntax:

log file keyword

file = name of new logfile•

keyword = append if output should be appended to logfile (optional)•

Examples:

log log.equil
log log.equil append

Description:

This command closes the current SPARTA log file, opens a new file with the specified name, and begins logging
information to it. If the specified file name is none, then no new log file is opened. If the optional keyword
append is specified, then output will be appended to an existing log file, instead of overwriting it.

If multiple processor partitions are being used, the file name should be a variable, so that different processors do
not attempt to write to the same log file.

The file "log.sparta" is the default log file for a SPARTA run. The name of the initial log file can also be set by
the command-line switch -log. See Section 2.6 for details.

Restrictions: none

Related commands: none

Default:

The default SPARTA log file is named log.sparta

355

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

mixture command

Syntax:

mixture ID species1 species2 ... keyword args ...

ID = user-defined name of the mixture•
species1, species2, ... = zero or more species IDs to include in the mixture•
zero or more keyword/arg pairs may be appended•
keyword = nrho or vstream or temp or frac or group or copy or delete

nrho arg = density
 density = number density of entire mixture (# per length^3 units)

vstream args = Vx Vy Vz
 Vx,Vy,Vz = streaming velocity of entire mixture (velocity units)

temp arg = thermal
 thermal = temperature of entire mixture (temperature units)

trot arg = Trot
 Trot = rotational temperature of entire mixture (temperature units)

tvib arg = Tvib
 Tvib = vibrational temperature of entire mixture (temperature units)

frac arg = fraction
 fraction = number fraction for each listed species (0 to 1)

group arg = SELF or group-ID
 SELF = put each listed species (or all species if none listed) in its own group
 group-ID = put the listed species (or all species if none listed) in a group with this ID

copy arg = new-ID
 new-ID = ID of new mixture to create, as a copy of this one

delete args = sp1 sp2 ...
 sp1,sp2,... = species to delete from the mixture

•

Examples:

mixture air N O NO group lite
mixture air N O NO vstream 250.0 0.0 0.0 group species
mixture air N frac 0.8
mixture air O frac 0.2 copy myAir
mixture background N O
mixture air delete N NO

Description:

Define a gas mixture and its properties. A mixture can be referenced by its ID in several other SPARTA
commands such as create_particles or per-grid computes. Any number of mixtures can be defined and used in a
simulation.

A mixture is a collection of one or more particle species as defined by the species command. Each species
belongs to a named group within the mixture so that particles of all species in the group can be acted on together
by other commands. The mixture has both global attributes and per-species attributes. All attributes have default
values unless they are explicitly specified.

The ID for a mixture is used to identify the mixture in other commands. Each mixture ID must be unique. The ID
can only contain alphanumeric characters and underscores.

356

https://sparta.github.io

Note that the mixture command can be used multiple times with the same ID, to add species to the mixture, define
groups within the mixture, or change its attributes. Also note that a species can belong to more than one mixture.

There are 2 default mixtures defined by SPARTA that always exist.

The first default mixture has an ID = "all", and contains all species that have been defined. When new species are
created via the "species" command, they are automatically added to this mixture. This mixture has only a single
group, also named "all", which all species belong to.

The second default mixture has an ID = "species", and also contains all species that have been defined. When new
species are created via the "species" command, they are also automatically added to this mixture. This mixture
defines one group per species, each with the species name, so that each species in the mixture belongs to its own
group.

Zero or more species can be specified in the mixture command. If a listed species is not already in the mixture,
due to a previous mixture command with the same ID, then that species is added to the mixture. As discussed
below, it will be assigned to a default group and assigned default per-species attributes, unless the appropriate
keywords are also specified.

Species can be specified which are already part of the mixture, to change their group assignment or their
per-species proerties, as disussed below.

Zero species can be specified, if other keywords are used which alter group assignments or change global
attributes of the mixture, as discussed below.

These keywords set global attributes of the mixture.

The nrho keyword sets a global attribute of the mixture, namely its density. For 3d simulations the units of the
specified density are #/volume. For 2d, the units are effectively #/area, since the z-dimension thickness of the
simulation box = 1.0.

The vstream keyword sets a global attribute of the mixture, namely the streaming velocity. Particles created using
the mixture will use the specified Vx,Vy,Vz values.

The temp keyword sets a global attribute of the mixture, namely the thermal temperature of its particles. It must
be a value >= zero. When particles are created, this value is used to sample a Gaussian velocity distribution,
which is superposed on the streaming velocity, when each particle's velocity is initialized.

The trot keyword sets a global attribute of the mixture, namely the rotational temperature of its particles. It must
be a value >= zero. When particles are created, this value is used to sample a Gaussian energy distribution to
define each particle's rotational energy. If this keyword is not specified, the thermal temperature is used as the
default.

The tvig keyword sets a global attribute of the mixture, namely the vibrational temperature of its particles. It must
be a value >= zero. When particles are created, this value is used to sample a Gaussian energy distribution to
define each particle's vibrational energy. If this keyword is not specified, the thermal temperature is used as the
default.

This keyword sets per-species attributes of the mixture.

The frac keyword sets a per-species attribute for individual species in the mixture. Each species has a relative
fractional density, such as 0.2, meaning one out of 5 particles is that species. The sum of this value across all

357

species in the mixture must equal 1.0. The frac keyword sets this value for the listed species. If this value has
never been set for M species out of the total N species in the mixture, then when a simulation is run, the frac value
for each of the M species is set to (1 - sum)/M, where sum is the sum of the frac values for the N-M assigned
species.

Each species in a mixture is assigned to exactly one group. The group keyword can be used to set or change these
assignments. Every mixture has one or more named groups.

As described by the collide command, mixture groups are used when performing collisions so that collisions
attempts, partners, and parameters can be treated on a per-group basis for accuracy and efficiency. Per-grid
computes also use mixture groups to calculate per-grid quantities on a per-grid-cell, per-group basis, i.e. on
subsets of particles within each grid cell.

If the group keyword is not used in a mixture command, no changes to group assignements are made for species
that are already in the mixture. If one or more new species are specified, then all of them are assigned to a group
with "default" as the group ID. Note that this means that mixtures defined with mixture commands that never use
the group keyword will have just a single group.

If the group keyword is used, the group ID can be any string you choose. Similar to the mixture ID, it can only
contain alphanumeric characters and underscores. Using SELF for the group ID has a special meaning as
discussed below.

The operation of the group keyword depends on whether no species or some species are specified explicitly in the
mixture command. It also depends on whether the group ID is SELF or a user-defined name. In each case, after
the operation is done, any group IDs for the mixture that have no species assigned to them are deleted. This
includes the "default" group if it was implicitly created by a previous mixture command.

If no species are listed in the mixture command and the group ID is SELF, then every species already in
the mixture is assigned to a group with its species ID as the group ID. I.e. there will now be one species
per group.

•

If one or more species are listed and the group ID is SELF, then each listed species is assigned to a group
with its species ID as the group ID.

•

If no species are listed and the group ID is not SELF, then all species already in the mixture are assigned
to a group with the specified ID.

•

If one or more species are listed and the group ID is not SELF, then the listed species are all assigned to a
group with the specified ID.

•

These keywords operate on one or more mixtures.

The copy keyword creates a new mixture with new-ID which is an identical copy of the mixture with ID.
Regardless of where the copy keyword appears in the command, the operation is delayed until all other keywords
have been invoked.

This is useful if you wish to create a new mixture which is nearly the same as the current mixture. Subsequent
mixture commands can be used to change the properties of the new mixture.

The delete keyword removes one or more species from the mixture, specified as sp1, sp2, etc. No other keywords
can be used with delete. All arguments that follow it are assumed to be species IDs that are currently in the
mixture. When using delete, no species can be defined before the keyword, i.e. species1, species2, etc cannot be
defined in the comand syntax described above.

358

After the listed species are removed, any group IDs for the mixture that have no species assigned to them are also
deleted.

Restrictions:

The streaming velocity and thermal temperature of the mixture cannot both be zero. A zero streaming velocity
means a zero vector = (0,0,0).

The restrictions on use of the delete keyword are described above.

Related commands:

global, create_particles

Default:

The nrho, vstream, and temp defaults are those defined for the background gas density, as set by the global
command. The trot and tvib defaults are to use the thermal temperature temp, either its default or the value
specified by this command. The frac default is described above. The group keyword has no default; if it is not
used, new species not already in the mixture are assigned to a group with a group ID = "default".

359

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

move_surf command

Syntax:

move_surf groupID style args ... keyword value ...

group-ID = group ID for which surface elements to move•
style = file or trans or rotate

file args = filename entry
trans args = Dx Dy Dz

 Dx,Dy,Dz = displacement applied to all surface points (distance units)
rotate args = theta Rx Ry Rz Ox Oy Oz

 theta = rotate surface points by this angle in counter-clockwise direction (degrees)
 Rx,Ry,Rz = rotate around vector starting at origin pointing in this direction
 Ox,Oy,Oz = origin to rotate around (distance units)

•

zero or more keyword/value pairs may be appended•
keyword = connect

 connect arg = yes or no

•

Examples:

move_surf all trans 1 0 0
move_surf partial rotate 360 0 0 1 5 5 0 connect yes
move_surf object2 rotate 360 0 0 1 5 5 0

Description:

This command performs a one-time movement of all the surface elements in the specified group via the specified
style. See the group surf command for info on how surface elements can be assigned to surface groups.

This command can be invoked as many times as desired, before or between simulation runs. Surface points can
also be moved on-the-fly during a simulation by using the fix move/surf command.

Moving surfaces between simulations can be useful if you want to perform a series of runs from one input script,
where some attribute of the surface elements change, e.g. the separation between two spheres.

IMPORTANT NOTE: The file style is not yet implemented. It will allow new positions of points to be listed in a
file.

In 2d, surface elements are line segments with 2 vertices each. In 3d, surface elements are triangles with 3 vertices
each. If a line segment or triangle belongs to the specified group, all of its vertices are moved. This effectively
moves the entire surface element.

IMPORTANT NOTE: Unless a vertex is on the simulation box boundary, it will be part of two surface elements
(in 2d) or multiple surface elements (in 3d). If you choose a surface groupID which does not include all the
elements in a gridded object, then you cannot move them without breaking apart the object in a "watertight" sense
(so that particles could erroneously move inside the object). To prevent this use the optional connect keyword
with its yes setting. This will insure that multiple copies of the same vertex in other elements (not in the surface
group) will also be moved. This is a way to morph the shape of a gridded object, e.g. make a sphere more oblate,
by moving only a portion of its elements.

360

https://sparta.github.io

The trans style shifts or displaces each vertex by the vector (Dx,Dy,Dz).

The rotate style rotates the coordinates of all vertices by an angle theta in a counter-clockwise direction, around
the vector starting at (Ox,Oy,Oz) and pointing in the direction Rx,Ry,Rz. Any desired rotation can be represented
by an appropriate choice of (Ox,Oy,Oz), theta, and (Rx,Ry,Rz).

After the surface has been moved, then all particles in grid cells that meet either of these criteria are deleted:

the grid cell is now inside a surface•
the grid cell overlaps with a surface element that moved•

This is to prevent particles from ending up inside surface objects.

Note that in this context, "overlaps" means that any part of the surface element touches any part of the grid cell,
including its surface. Also note that if a surface element object (e.g. a sphere) moved a long distance then grid
cells that were inside the object in its old position and thus contained no particles, will still have no particles
immediately after the move. This will effectively leave a "void" in the flow until particles re-fill the grid cells that
are now outside the object.

Restrictions:

An error will be generated if any surface element vertex is moved outside the simulation box.

Related commands:

read_surf, fix move/surf, remove_surf

Default:

The option default is connect = no.

361

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

next command

Syntax:

next variables

variables = one or more variable names•

Examples:

next x
next a t x myTemp

Description:

This command is used with variables defined by the variable command. It assigns the next value to the variable
from the list of values defined for that variable by the variable command. Thus when that variable is subsequently
substituted for in an input script command, the new value is used.

See the variable command for info on how to define and use different kinds of variables in SPARTA input scripts.
If a variable name is a single lower-case character from "a" to "z", it can be used in an input script command as $a
or $z. If it is multiple letters, it can be used as ${myTemp}.

If multiple variables are used as arguments to the next command, then all must be of the same variable style:
index, loop, file, universe, or uloop. An exception is that universe- and uloop-style variables can be mixed in the
same next command.

All the variables specified with the next command are incremented by one value from their respective list of
values. A file-style variable reads the next line from its associated file. String- or particle- or equal- or world-style
variables cannot be used with the the next command, since they only store a single value.

When any of the variables in the next command has no more values, a flag is set that causes the input script to
skip the next jump command encountered. This enables a loop containing a next command to exit. As explained
in the variable command, the variable that has exhausted its values is also deleted. This allows it to be used and
re-defined later in the input script. File-style variables are exhausted when the end-of-file is reached.

When the next command is used with index- or loop-style variables, the next value is assigned to the variable for
all processors. When the next command is used with file-style variables, the next line is read from its file and the
string assigned to the variable.

When the next command is used with universe- or uloop-style variables, all universe- or uloop-style variables
must be listed in the next command. This is because of the manner in which the incrementing is done, using a
single lock file for all variables. The next value (for each variable) is assigned to whichever processor partition
executes the command first. All processors in the partition are assigned the same value(s). Running SPARTA on
multiple partitions of processors via the "-partition" command-line switch is described in Section 2.6 of the
manual. Universe- and uloop-style variables are incremented using the files "tmp.sparta.variable" and
"tmp.sparta.variable.lock" which you will see in your directory during and after such a SPARTA run.

Here is an example of running a series of simulations using the next command with an index-style variable. If this
input script is named in.flow, 8 simulations would be run using surface data files from directories run1 thru run8.

362

https://sparta.github.io

variable d index run1 run2 run3 run4 run5 run6 run7 run8
shell cd $d
create_box 0 10 0 10 0 10
create_grid 100 100 100
read_surf data.surf 1
...
run 10000
shell cd ..
clear
next d
jump in.flow

If the variable "d" were of style universe, and the same in.flow input script were run on 3 partitions of processors,
then the first 3 simulations would begin, one on each set of processors. Whichever partition finished first, it would
assign variable "d" the 4th value and run another simulation, and so forth until all 8 simulations were finished.

Jump and next commands can also be nested to enable multi-level loops. For example, this script will run 15
simulations in a double loop.

variable i loop 3
 variable j loop 5
 clear
 ...
 read_surf data.surf.ij 1
 print Running simulation $i.$j
 run 10000
 next j
 jump in.script
next i
jump in.script

Here is an example of a double loop which uses the if and jump commands to break out of the inner loop when a
condition is met, then continues iterating thru the outer loop.

label loopa
variable a loop 5
 label loopb
 variable b loop 5
 print "A,B = $a,$b"
 run 10000
 if $b > 2 then "jump in.script break"
 next b
 jump in.script loopb
label break
variable b delete

next a
jump in.script loopa

Restrictions: none

Related commands:

jump, include, shell, variable,

Default: none

363

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

package command

Syntax:

package style args

style = kokkos•
args = arguments specific to the style

kokkos args = keyword value ...
 zero or more keyword/value pairs may be appended
 keywords = comm or react/extra or react/retry or gpu/aware

comm value = threaded or serial
 threaded = perform pack/unpack using KOKKOS (e.g. on GPU or using OpenMP) (default for GPUs)
 serial = perform communication pack/unpack in non-KOKKOS mode (default for CPUs)

react/extra = factor
 factor = increase memory used for collisions by this factor (default)

react/retry = yes or no
 yes = retry collision algorithm until successful
 no = do not retry collision algorithm (default)

gpu/aware = yes or no
 yes = use GPU-aware MPI (default)
 no = do not use GPU-aware MPI

•

Examples:

package kokkos comm serial
package kokkos comm threaded react/retry yes
package kokkos gpu/aware no

Description:

This command invokes package-specific settings for the KOKKOS accelerator package available in SPARTA.

If this command is specified in an input script, it must be near the top of the script, before the simulation box has
been created. This is because it specifies settings that the accelerator package used in its initialization, before a
simulation is defined.

This command can also be specified from the command-line when launching SPARTA, using the "-pk"
command-line switch. The syntax is exactly the same as when used in an input script.

Note that the KOKKOS accelerator package requires the package command to be specified, if the package is to be
used in a simulation (SPARTA can be built with the accelerator package without using it in a particular
simulation). However, a default version of the command is typically invoked by other accelerator settings. For
example, the KOKKOS package requires a "-k on" command-line switch respectively, which invokes a "package
kokkos" command with default settings.

NOTE: A package command for a particular style can be invoked multiple times when a simulation is setup, e.g.
by the "-k on", "-sf", and "-pk" command-line switches, and by using this command in an input script. Each time
it is used all of the style options are set, either to default values or to specified settings. I.e. settings from previous
invocations do not persist across multiple invocations.

364

https://sparta.github.io

See the the Accelerating SPARTA section of the manual for more details about using the various accelerator
packages for speeding up SPARTA simulations.

The kokkos style invokes settings associated with the use of the KOKKOS package.

All of the settings are optional keyword/value pairs. Each has a default value as listed below.

Chemical reactions (gas or surface) can increase the number of particles in the simulation, which requires extra
memory storage. It is not possible to resize Kokkos data structures during the reaction routines, so two
workarounds are provided. The default is to use the react/extra keyword, which ensures there is extra memory
allocated to store new particles. For example, if react/extra is set to 1.1, then the memory is over-allocated by
10%. If this space is still not sufficient to hold new particles, the code will error out and the simulation must be
restarted using a larger value for react/extra. Alternatively, if the react/retry option is set to yes, backup copies of
the Kokkos data structures are created. If space is exceeded during reactions, the Kokkos data structures are
restored from backup, their size is increased, and the collide or move routine is started over from the beginning.
This guarantees that reactions will eventually succeed without producing an error, but increases memory by a
factor of 2 and also has overhead from making a backup copy of the data. If the react/retry option is set to yes, the
react/extra keyword will be ignored. If reactions are not defined, both of these options will be ignored.

The comm keyword determines whether the host or device performs the packing and unpacking of data when
communicating per-atom data between processors. The value options are threaded or serial.

The optimal choice for this keyword depends on the hardware used. When running on CPUs or Xeon Phi, the
serial option is typically fastest. When using GPUs, the threaded value will typically be optimal. In this case data
can stay on the GPU for many timesteps without being fully moved between the host and GPU.

The gpu/aware keyword chooses whether GPU-aware MPI will be used. When this keyword is set to on, buffers
in GPU memory are passed directly through MPI send/receive calls. This can reduce overhead of first copying the
data to the host CPU. However GPU-aware MPI is not supported on all systems, which can lead to segmentation
faults and would require using a value of off.

Restrictions:

This command cannot be used after the simulation box is defined by a create_box command.

The kk style of this command can only be invoked if SPARTA was built with the KOKKOS package. See the
Making SPARTA section for more info.

Related commands:

suffix, "-pk" command-line setting

Default:

For the KOKKOS package, the option defaults are react/extra = 1.1, react/retry = no, and gpu/aware yes. For
CPUs: comm = serial, and for GPUs: comm = threaded. These settings are made automatically by the required "-k
on" command-line switch. You can change them by using the package kokkos command in your input script or
via the "-pk kokkos" command-line switch.

365

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

partition command

Syntax:

partition style N command ...

style = yes or no•
N = partition number (see asterisk form below)•
command = any SPARTA command•

Examples:

partition yes 1 processors 4 10 6
partition no 5 print "Active partition"
partition yes *5 fix all nve
partition yes 6* fix all nvt temp 1.0 1.0 0.1

Description:

This command invokes the specified command on a subset of the partitions of processors you have defined via the
-partition command-line switch. See Section 2.6 of the manual for an explanation of the switch.

Normally, every input script command in your script is invoked by every partition. This behavior can be modified
by defining world- or universe-style variables that have different values for each partition. This mechanism can be
used to cause your script to jump to different input script files on different partitions, if such a variable is used in a
jump command.

The "partition" command is another mechanism for having an input script operate differently on different
partitions. It is basically a prefix on any SPARTA command. The commmand will only be invoked on the
partition(s) specified by the style and N arguments.

If the style is yes, the command will be invoked on any partition which matches the N argument. If the style is no
the command will be invoked on all the partitions which do not match the Np argument.

Partitions are numbered from 1 to Np, where Np is the number of partitions specified by the -partition
command-line switch.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or a
wild-card asterisk can be used to span a range of partition numbers. This takes the form "*" or "*n" or "n*" or
"m*n". An asterisk with no numeric values means all partitions from 1 to Np. A leading asterisk means all
partitions from 1 to n (inclusive). A trailing asterisk means all partitions from n to Np (inclusive). A middle
asterisk means all partitions from m to n (inclusive).

Restrictions: none

Related commands: none

Default: none

366

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

print command

Syntax:

print string keyword value:pre

string = text string to print, which may contain variables•
zero or more keyword/value pairs may be appended•
keyword = file or append or screen

file value = filename
append value = filename
screen value = yes or no

•

Examples:

print "Done with equilibration"
print 'Done with equilibration'
print "Done with equilibration" file info.dat

compute myTemp temp
variable t equal c_myTemp
print "The system temperature is now $t"

Description:

Print a text string to the screen and logfile. One line of output is generated. The text string must be a single
argument, so it should be enclosed in quotes if it is more than one word. If it contains variables, they will be
evaluated and their current values printed.

If the file or append keyword is used, a filename is specified to which the output will be written. If file is used,
then the filename is overwritten if it already exists. If append is used, then the filename is appended to if it already
exists, or created if it does not exist.

If the screen keyword is used, output to the screen and logfile can be turned on or off as desired.

If you want the print command to be executed multiple times (e.g. with changing variable values), there are 3
options. First, consider using the fix print command, which will print a string periodically during a simulation.
Second, the print command can be used as an argument to the every option of the run command. Third, the print
command could appear in a section of the input script that is looped over (see the jump and next commands).

See the variable command for a description of equal style variables which are typically the most useful ones to
use with the print command. Equal-style variables can calculate formulas involving mathematical operations,
global values calculated by a compute or fix, or references to other variables.

Restrictions: none

Related commands:

fix print, variable

Default:

367

https://sparta.github.io

The option defaults are no file output and screen = yes.

368

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

quit command

Syntax:

quit

Examples:

quit
if "$n > 10000" then quit

Description:

This command causes SPARTA to exit, after shutting down all output cleanly.

It can be used as a debug statement in an input script, to terminate the script at some intermediate point.

It can also be used as an invoked command inside the "then" or "else" portion of an if command.

Restrictions: none

Related commands:

if

Default: none

369

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

react command

Syntax:

react style args

style = none or tce or qk or tce/qk•
args = arguments for that style

none args = none
tce args = infile

 infile = file with list of gas-phase chemistry reactions
qk args = infile

 infile = file with list of gas-phase chemistry reactions
tce/qk args = infile

 infile = file with list of gas-phase chemistry reactions
tce/kk args = infile

 infile = file with list of gas-phase chemistry reactions

•

Examples:

react none
react tce air.tce
react qk air.tce

Description:

Define chemical reactions to perform in the gas phase when particle-particle collisions occur. See the surf_react
command for specification of surface chemistry reactions.

The none style means that no chemistry will be performed, which is the default.

For other styles, a file is specified which contains a list of chemical reactions, with their associated parameters.
The reactions are read into SPARTA and stored in a list. Each time a simulation is run via the run command, the
list is scanned. Only reactions for which all the reactants and all the products are currently defined as species-IDs
will be active for the simulation. Thus the file can contain more reactions than are used in a particular simulation.
See the species command for how species IDs are defined.

The reaction models for the various styles are described below. When a pair of particles collide, the list of all
reactions with those two species as reactants is looped over. A probability for each reaction is calculated, using
the formulas discussed below, and a random number is used to decide which reaction (if any) takes place. No
check is made that the sum of probabilities for all possible reactions is <= 1.0, but that should normally be the
case if reasonable reaction coefficients are defined.

The format of the reaction file is the same for all three of the currently defined styles, and is also described below.
The various styles interpret and compute the specified reactions in different ways. The data directory in the
SPARTA distribution contains reaction files for these reaction models, all with the suffix ".tce".

The tce style is Bird's Total Collision Energy (TCE) model. When this style is specified, all computed reactions
will use the TCE model.

370

https://sparta.github.io

Using kinetic theory, the TCE model allows for reaction probabilities to be defined based on known, measured,
reaction rates. The model is described in detail in (Bird94); see chapter 6. The required input parameters for each
reaction (discussed below) are values that permit its effective Arrhenius rate to be calculated, namely

where K(T) is the forward reaction rate, T is the temperature of the participating molecules which is a function of
their velocities and internal energy states, k the Boltzmann constant, and A,b,Ea are input parameters as discussed
below.

All 5 reactions coefficients read from the reaction file (described below) are used to calculate terms in equation
6.10 of (Bird94) for the probability that a reaction takes place.

The C2, C3, C4 values are the Arrhenius activation energy Ea, prefactor A, and exponent b, used in the rate
formula above.

The qk style is Bird's Quantum-Kinetic model (QK). When this style is specified, all computed reactions will use
the QK model.

The QK model implemented is that of (Bird09) as validated (Gallis09) and modified (Gallis10).

The QK model depends solely on properties of the colliding molecules and unlike the TCE model makes no use
of measured reaction rates or adjustable parameters. The macroscopic properties used in the QK model are the
available collision energy, activation energies, and quantized vibrational energy levels.

According to the QK model dissociation reactions take place when the maximum obtainable vibrational energy
after an inelastic energy exchange is higher than the dissociation level (Bird09).

Exchange reactions take place when the vibrational energy after a trial energy exchange is above the activation
energy of the exchange reaction (Gallis10).

A new version of the QK model for exchange reactions has been proposed by (Bird11). This will be implemented
in future releases of SPARTA.

For the QK model, SPARTA reads the same 5 coefficients per reaction from the reaction file (described below) as
for the TCE model. Three of the coefficients (C1,C2,C5) are used to calculate terms in equation 6.10 of (Bird94)
for the probability that a reaction takes place. The Arrhenius rate parameters C3 and C4 are ignored by the QK
model.

The tce/qk style is a hybrid model which can be used to compute reactions using both the TCE and QK models.
When this style is specified, reactions from the input file that are flagged with an A = Arrhenius style will be

371

computed using the TCE model. Reactions from the input file that are flagged with a Q = Quantum style will be
computed using the QK model.

The format of the input reaction file is as follows. Comments or blank lines are allowed in the file. Comment lines
start with a "#" character. All other entries must come in 2-line pairs with values separated by whitespace in the
following format

R1 + R2 + ... --> P1 + P2 + ...
type style C1 C2 ...

The first line is a text-based description of a single reaction. R1, R2, etc are one or more reactants, listed as
species IDs. P1, P2, etc are one or more products, also listed as species IDs. The number of allowed reactants and
products depends on the reaction type, as discussed below. In most cases there is no restriction on the order or
listed reactants or products on what species are listed. Exceptions are detailed below. Note that individual
reactants and products must be separated by whitespace and a "+" sign. The left-hand and right-hand sides of the
equation must be separated by whitespace and "-->".

The type of each reaction is a single character (upper or lower case) with the following meaning. The type
determines how many reactants and products can be specified in the first line.

D = dissociation = 2 reactants and 3 products
E = exchange = 2 reactants and 2 products
I = ionization = 2 reactants and 2 or 3 products
R = recombination = 2 reactants and 1 product (see below)

A dissociation reaction means that R1 dissociates into P1 and P2 when it collides with R2. R2 is preserved in the
collision, so P3 = R2 is required.

An exchange reaction is a collision between R1 and R2 that results in new products P1 and P2. There is no
restriction on the species involved in the reaction.

An ionization reaction with 2 products is typically a collision between R1 and R2 that results in a positively
charged ion and an election. See the discussion on ambipolar reactions below. However, SPARTA does not check
for this, so there is no restriction on the species involved in the reaction.

An ionization reaction with 3 products is typically a collision between a neutral R1 and an electon R2 which
ejects an electron from the neutral species, resulting in an ion P1 and a new electron P2. See the discussion on
ambipolar reactions below. Again, SPARTA does not check for this, so there is no restriction on the species
involved in the reaction. R2 is preserved in the collision, so P3 = R2 is required.

A recombination reaction is a collision between R1 and R2 that results in P1. There is no restriction on the species
involved in the reaction.

Note that recombination reactions actually involve a 3rd particle whose species is not altered by the reaction but
whose velocity is, in order to balance energy and momentum. So conceptually it can be thought of as both a
reactant and a product. There are 3 ways you can specify recombination reactions, to include information about
which species of 3rd particles are eligible to participate:

R1 + R2 -> P1
R1 + R2 -> P1 + atom/mol
R1 + R2 -> P1 + P2

In the first case, no info for a 3rd particle is listed. This means any species of 3rd particle can be used. In the
second case, a non-species keyword is used, either "atom" or "mol". This means the 3rd particle must be either an

372

atomic species, or a molecular species. This is based on the vibrational degrees of freedom listed in the species
file. A non-zero DOF is molecular; zero DOF is atomic. In the third case, a specific species P2 is listed. This
means the 3rd particle must be that species.

Note that for the same R1 and R2, multiple recombination reactions can be listed in the reaction file. When two
particles R1 and R2 are selected for collision and a possible reaction, if any recombination reaction is defined for
R1 and R2, then a 3rd particle in the same grid cell is randomly selected. Its species P2 is used to match at most
one of the possibly multiple recombination reactions for R1 and R2. Only that recombination reaction is checked
for a reaction as a possible outcome of the collision.

This matching is done from most-specific to least-specific, i.e. the reverse ordering of the 3 cases above. If there
is a defined reaction that lists P2 (third case, most specific), it is used. If not, and there is a defined reaction for
"atom" or "mol" that corresponds to P2 (second case, intermediate specificity), then it is used. If not, and there is a
defined reaction with no P2 (first case, least specific), then it is used. If none of these matches occur, no
recombination reaction is possible for that collision between R1 and R2. Note that these matching rules means
that for the same R1 and R2, you can list two reactions, one with P2 = "atom", and one with P2 = "mol". And/or
you can list multiple reactions of the third kind, each with a unique P2.

IMPORTANT NOTE: If the ambipolar approximation is being used, via the fix ambipolar and collide_modify
ambipolar yes commands, then reactions which involve either ambipolar ions or the ambipolar electron have more
restricitve rules about the ordering of reactants and products. See the next section for a discussion of these
requirements.

The style of each reaction is a single character (upper or lower case) with the following meaning:

A = Arrhenius•
Q = Quantum•

The style determines how many reaction coefficients are listed as C1, C2, etc, and how they are interpreted by
SPARTA.

For both the A = Arrhenius style and Q = Quantum style, there are 5 coefficients:

C1 = number of internal degrees of freedom (as defined by the TCE model)•
C2 = Arrhenius activation energy Ea•
C3 = Arrhenius prefactor A•
C4 = Arrhenius exponent b•
C5 = overall reaction energy (positive for exothermic)•

The different reaction styles use these values in different ways, as explained above.

If the ambipolar approximation is being used, via the fix ambipolar command, then reactions which involve either
ambipolar ions or the ambipolar electron have more restricitve rules about the ordering of reactants and products,
than those described in the preceeding section.

Note that ambipolar collisions are turned on via the collide_modify ambipolar yes commands, which in turn
requries that the fix ambipolar is defined in your input script. This fix defines a particular species as an ambipolar
electron, written as "e" in the reactions that follow. It also defines a list of ambipolar ions, which are written as
species with a trailing "+" sign in the rules that follow. Neutral species (without "+") can be any non-ambipolar
species.

373

These rules only apply to reactions that involve ambipolar species (ions or electrons) as a reactant or product.
Note that every ambipolar reaction written here conserves charge. I.e. the net charge of the reactants equals the
net charge of the products.

Ambipolar dissociation reactions must list their reactants and products in one of the following orders:

AB + e -> A + e + B
AB+ + e -> A+ + e + B

Ambipolar ionization reactions with 2 or 3 products must be in one of the following orders:

A + B -> AB+ + e
A + e -> A+ + e + e

Ambipolar exchange reactions must be in one of the following orders:

AB+ + e -> A + B
AB+ + C -> A + BC+
C + AB+ -> A + BC+

Ambipolar recombination reactions must be in the following order:

A+ + e -> A
A + B+ -> AB+
A+ + B -> AB+

A third particle for recombination reactions can be specified in the same way as described above for
non-ambipolar recombination.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions: none

Related commands:

collide, surf_react

Default:

style = none

374

(Bird94) G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford
(1994).

(Bird09) G. A. Bird, Chemical Reactions in DSMC Rarefied Gas Dynamics, Editor T Abe, AIP Conference
Proceedings (2009).

(Bird11) G. A. Bird, "The Q-K model for gas-phase chemical reaction rates", Physics of Fluids, 23, 106101,
(2011).

(Gallis09) M. A. Gallis, R. B. Bond, and J. R. Torczynski, "A Kinetic-Theory Approach for Computing
Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows", J Chem Phys, 131, 124311, (2009).

(Gallis10) M. A. Gallis, R. B. Bond, and J. R.Torczynski, "Assessment of Collision-Energy-Based Models for
Atmospheric-Species Reactions in Hypersonic Flows", J Thermophysics and Heat Transfer, (2010).

375

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

react_modify command

Syntax:

react_modify keyword values ...

one or more keyword/value pairs may be listed•
keywords = recomb or rboost or compute_chem_rates or partial_energy

recomb value = yes or no = enable or disable defined recombination reactions
rboost value = rfactor

 rfactor = boost probability of recombination reactions by this factor
compute_chem_rates value = yes or no = enable or disable computation of Arrhenius rate for chemical

 reaction without performing the reaction
partial_energy = yes or no = use partial energy or total energy for TCE chemistry

•

Examples:

react_modify recomb no
react_modify rboost 100.0

Description:

Set parameters that affect how reactions are performed.

The recomb keyword turns on or off recombination reactions. It is only relevant if recombination reactions were
defined in the reaction file read in by the react command. If the setting is no then they will be disabled even if
they were listed in the reaction file. This is useful to turn recombination reactions off, to see if they affect
simulation results.

The rboost keyword is a setting for recombination reactions. It is ignored if no recombination reactions exist, or
the recomb keyword is set to no. The rboost setting does not affect the overalll statistical results of recombination
reactions, but tries to improve their computational efficiency. Recombination reactions typically occur with very
low probability, which means the code spends time testing for reactions that rarely occur. If the rfactor is set to N
> 1, then recombination reactions are skipped N-1 out of N times, when one or more such reactions is defined for
a pair of colliding particles. A random number us used to select on that probability. To compensate, when a
recombination reaction is actually tested for occurrence, its rate is boosted by a factor of N, making it N times
more likely to occur.

The smallest value rboost can be set to is 1.0, which effectively applies no boost factor.

IMPORTANT NOTE: Setting rboost too large could meant the probability of a recombination reaction becomes >
1.0, when it is does occur. SPARTA does not check for this, so you should estimate the largest boost factor that is
safe to use for your model.

The compute_chem_rates keyword is a setting that allows the user to only compute Arrhenius rates for chemical
reactions without performing them. Currently only the TCE reaction model supports this keyword; an error will
occur when using the QK or TCE/QK reaction model with this keyword.

The partial_energy keyword is a setting that allows the user to choose the amount of internal energy and internal
degrees of freedom used in the TCE model.

376

https://sparta.github.io

If the partial_energy keyword is set to yes, the rDOF model of Bird is used, and only the sum of the relative
translational energy between the partcles and a fraction of the rotational energy is used. The participating internal
degrees of freedom are either set to 1 (dissociation reactions), or 0 (recombination, exchange, ionization
reactions).

Conversely, if the partial_energy keyword is set to no, then the total energy model is used, i.e. the sum of the
relative translational energy between the partcles and the rotational and vibrational energies. The participating
internal degrees of freedom are computed directly by the code and do not need to be inputted by the user. The
vibrational energy model used has an impact on the internal degrees of freedom used in the TCE model in that
case. This option is ignored for the QK reaction model.

Restrictions: none

Related commands:

react

Default:

The option defaults are recomb = yes, rboost = 1000.0, compute_chem_rates = no, partial_energy = yes.

377

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

read_grid command

Syntax:

read_grid filename keyword args ...

filename = name of grid file•
zero or more keyword/args pairs may be appended•
keyword = custom

custom args = name datatype Nc
 name = name of custom per-grid vector or array
 datatype = int or float = for integer or floating point values
 Nc = 0 for a vector (single value), Nc >= 1 for an array (one or more values)

•

Examples:

read_grid data.grid
read_grid data.grid custom temperature double 0

Description:

Read a grid file in text format which lists the grid cell IDs to be used to construct a hierarchical grid that overalys
the simulation domain defined by the create_box command. The grid can also be defined by the create_grid
command.

The grid file can be written by the write_grid command in a previous simulation, or be created by some
pre-processing tool. See Section 6.8 of the manual for a definition of hierarchical grids and grid cell IDs as used
by SPARTA. Note that if the grid is hierarchical, grid cell IDs are not simply numbered from 1 to N. They also
encode the cell's logical position within the grid hierarchy.

The specified file can be a text file or a gzipped text file (detected by a .gz suffix). See the write_grid command
for a description of the format of the file.

The grid cell IDs read from the file (one per line) are assigned to processors in a round-robin fashion, which
means in general the set of cells a processor owns will not be contiguous in a geometric sense. They are thus
assumed to be a "dispersed" assignment of grid cells to each processor.

IMPORTANT NOTE: See Section 6.8 of the manual for an explanation of clumped and dispersed grid cell
assignments and their relative performance trade-offs. The balance_grid command can be used after the grid is
read, to assign child cells to processors in different ways. The "fix balance" command can be used to re-assign
them in a load-balanced manner periodically during a running simulation.

The custom keyword allows a custom per-grid vector or array to be created and initialized. Custom vectors or
arrays associate a single value or multiple values with each grid cell. They can be output by the dump grid
command and uses as inputs by other commands. For example, many of the models for the surf_collide command
take temperature as an input; use of a per-surf vector allows the temperature of individual surface elements to be
specified.

The name argument is the name assigned to the new custom vector or array. The datatytpe argument is int or float
which determines whether the vector/array stores integer or floating point values. The Nc argument is 0 for a

378

https://sparta.github.io

per-surgrid vector and an integer >= 1 for an array with Nc columns. A per-grid vector stores a single value per
grid cell; a per-grid array stores Nc values per grid cell.

Each use of the custom keyword determines how many values are appended for each line following the grid cell
ID. For a custom per-grid vector, a single value is appended. For a custom per-grid array, Nc values are appended.
The values are assigned to custom vectors or arrays in the order the custom keywords are specified. For example,
for this read_grid command, 4 custom values should be added to the end of each line in the Cells section of the
input file:

read_grid grid.data custom temperature float 0 custom flags int 3

The first floating-point value will be the temperature, the next 3 integers will be flags.

Restrictions:

This command can only be used after the simulation box is defined by the create_box command.

To read gzipped grid files, you must compile SPARTA with the -DSPARTA_GZIP option - see Section 2.2 of the
manual for details.

Related commands:

create_box, create_grid, write_grid

Default: none

379

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

read_isurf command

Syntax:

read_isurf group-ID Nx Ny Nz filename thresh ablateID keyword args ...

group-ID = group ID for which grid cells to perform calculation on•
Nx,Ny,Nz = grid cell extent for adding implicit surfs•
filename = binary file with grid corner point values•
thresh = threshold for surface definition, value > 0.0 and < 255.0•
ablateID = ID of a fix ablate command•
zero or more keyword/args pairs may be appended•
keyword = group or type or push or precision or read

 group arg = group-ID
 group-ID = new or existing surface group to assign the surface elements to
 type arg = tfile
 tfile = binary file with per grid cell surface type values
 push arg = yes or no = whether to push corner point values to 0/255
 precision arg = int or double
 read arg = serial or parallel

•

Examples:

read_isurf portion 100 100 1 isurf.material.2d 180.5 fablate group mesh
read_isurf subset 150 100 50 isurf.materials.3d 120.5 fablate type isurf.type
read_isurf subset 150 100 50 isurf.materials.3d 120.5 fablate read parallel

Description:

Read the geometry of a surface from the specified file. In SPARTA, a "surface" is a collection of surface elements
that represent the surface of one or more physical objects which will be embedded in the global simulation box.
Surfaces can be explicit or implicit.

This command reads implicit surfaces from a file containing grid corner point values which implicitly define the
surface elements. See the read_surf command to read explicit surfaces from a different kind of file. See the Howto
6.13 section of the manual for an explantion of explicit versus implicit surfaces as well as distributed versus
non-distributed storage. You cannot mix explicit and implicit surfaces in the same simulation.

Surface elements are triangles in 3d or line segments in 2d. Surface elements for each physical object are required
to be a complete, connected set that tile the entire surface of the object. See the discussion of watertight surfaces
below. Implicit surfaces will always be watertight, due to the algorithm that defines them.

Here are simulation snapshots of 2d and 3d implicit surface models through which particles could flow. Click on
either image for a larger image. In the 2d case, the colorings are by processor for sub-domains each owns. The
implicit triangles for the 3d case were created via Marching Cubes (discussed below) from a tomographic image
of a sample of NASA FiberForm (TM) material, used as a heat shield material on spacecraft.

380

https://sparta.github.io

Particles collide with surface elements as they advect. Each surface element is assigned to a collision model,
specified by the surf_collide command which affects how a particle bounces off the surface. Each surface element
can optionally be assigned to a reaction model, specified by the surf_react command which determines if any
surface chemistry occurs during a collision. Statistics for each surface element due to their interactions with
particles can be tallied via the compute isurf/grid command, time-averaged via the fix ave/grid command, and
ouput via the dump surface command.

Surface elememts can be assigned to surface groups via the group surf command. Surface group IDs are used by
other commands to operate on selected sets of elements. This command has a type keyword which can be used to
help assign different elements to different groups.

Note that at some point, it will be possible to use the read_isurf command multiple times to read surfaces from
multiple files and add them to the simulation domain, so long as the grid extent of the different commands does
not overlap. However currently, that is not yet possible.

The format of a surface file for implicit surfaces is discussed below.

The tools directory contains a implicit_grid.py tool which can create implicit surface files in a randomized manner
for different grid extents.

The specified group-ID must be the name of a grid cell group, as defined by the group grid command, which
contains a set of grid cells, all of which are the same size, and which comprise a contiguous 3d array, with
specified extent Nx by Ny by Nz. For 2d simulations, Nz must be specified as 1, and the group must comprise a 2d
array of cells that is Nx by Ny. These are the grid cells in which implicit surfaces will be created.

The specified filename is for a binary file in the following format:

first 4 bytes = Nxfile (integer)•
next 4 bytes = Nyfile (integer)•
next 4 bytes = Nzfile (integer), only for 3d simulations•
final N bytes = Nxfile by Nyfile by Nzfile grid corner point values (integer)•

For 2d simulations, the first 8 bytes store 2 integers in binary format: Nxfile and Nyfile. For 3d simulations, the
first 12 bytes store 3 integers in binary format: Nxfile, Nyfile, and Nzfile. These are the dimensions of the grid of
corner point values in the remainder of the file.

381

IMPORTANT NOTE: The Nxfile, Nyfile, Nzfile values are for a 2d or 3d grid of corner points, which overlay the
Nx by Ny by Nz grid of cells. In each dimension there is one more corner point than cells. Thus Nxfile = Nx+1,
Nyfile = Ny+1, Nzfile = Nz+1 is required. SPARTA will give an error if the read_isurf Nx,Ny,Nz arguments do
not match the first 2 or 3 integers in the file.

The remaining N bytes of the file are a series of corner point values. There are N = Nxfile * Nyfile values in 2d,
and N = Nxfile * Nyfile * Nzfile values in 3d.

If the precision keyword is set to int, which is the default, then the values are one-byte integers, from 0 to 255
inclusive. If the precision keyword is set to double, then they are double-precision floating point values, from 0.0
to 255.0 inclusive. The one-byte integer format is what is typically used for tomographic images. The
double-precision format is what is written by the write_isurf command. The latter is typically used when running
an ablation model via the fix ablate command, where material is removed incrementally (from the corner point
values) due to collisions of particles with the implicit surfaces.

IMPORTANT NOTE: The corner point values are a 2d or 3d regular array which must be ordered as follows. The
x indices (1 to Nxfile) vary fastest, then the y indices (1 to Nyfile), and the z indices slowest (1 to Nzfile). These
will be assigned as corner points to each child grid cell in the Nx by Ny by Nz simulation domain. For mapping
corner points to grid cells, the ordering of the regular array of grid cells in the simulation domain is the same:
their x indices vary fastest, then y, and their z indices very slowest.

The 8 corner point values (4 in 2d) for each grid cell are used with a marching cubes algorithm (marching squares
in 2d) to infer a set of triangles (line segments in 2d) which are created in the grid cell.

IMPORTANT NOTE: All triangles (line segments in 2d) created within the same grid cell are assigned the same
surface ID, which is the grid cell ID.

A good description of the two algorithms is given on these Wikipedia webpages:

https://en.wikipedia.org/wiki/Marching_cubes•
https://en.wikipedia.org/wiki/Marching_squares•

The algorithms require a threshold value as input, which is the thresh value in the read_isurf command. For
corner point values that bracket the threshold, it determines precisely where in the grid cell the corner points of
the inferred implicit surface elements will be.

The threshold must be specified as a floating point value such that 0 < thresh < 255. An integer value for thresh
(e.g. 128 or 128.0) is not allowed, because that could induce generation of implicit surfaces with zero length (2d
line) or area (3d triangle).

IMPORTANT NOTE: The aggregate set of implicit surfaces created by this procedure must represent a watertight
object(s), the same as explained for the read_surf command, otherwise SPARTA will generate an error. The
marching cube and square algorithms guarantee this. However, if the Nx by Ny by Nz array of grid cells is
interior to the simulation box, the entire outer boundary of the Nx+1 by Ny+1 by Nz+1 grid of corner points
should have values = 0. This will insure no surface element touches the outer boundary (which would induce a
non-watertight surface). If the array of grid cells touches a simulation box face, then this is not a requirement (the
same as if a set of explicit surfs were clipped at the box boundary). However, if a boundary is periodic in a
particular dimension and the array of grid cells touches that boundary, then you must insure the Nx+1 by Ny+1 by
Nz+1 grid of corner points spans that entire dimension, and its values are periodic in the same sense the
simulation box is. E.g. if the y dimension is periodic, then the corner point values at the y = 1 and y = Ny+1 lines
or planes of the 2d or 3d corner point array must be identical for each x and z coordinate. Otherwise the aggregate
set of induced implicit surfaces will not be consistent across the y periodic boundary.

382

The specified ablateID is the fix ID of a fix ablate command which has been previously specified in the input
script. It will store the grid corner point values for each grid cell. It also has the code logic for converting grid
corner point values to surface elements (line segments or triangles) and also optinally allows for the surface to be
ablated during a simulation due to particles colliding with the surface elements.

The following optional keywords affect attributes of the read-in surface elements and how they are read.

Surface groups are collections of surface elements. Each surface element belongs to one or more surface groups;
all elements belong to the "all" group, which is created by default. Surface group IDs are used by other commands
to identify a group of suface elements to operate on. See the group surf command for more details.

Every surface element also stores a type which is a positive integer. Type values are useful for flagging subsets of
elements. For example, implicit surface elemnts in different regions of the simulation box. Surface element types
can be used to define surface groups. See the group surf command for details.

The group keyword specifies an extra surface group-ID to which all the implicit surface elements are assigned
when created by the read-in corner points. All the created implicit elements are also assigned to the "all" group
and to group-ID. If group-ID does not exist, a new surface group is created. If it does exist the create implicit
surface elements are added to that group.

The type keyword triggers the reading of a per grid cell type file with the specified name tfile.

The specified filename is for a binary file in the following format:

first 4 bytes = Nxfile (integer)•
next 4 bytes = Nyfile (integer)•
next 4 bytes = Nzfile (integer), only for 3d simulations•
final N bytes = Nxfile by Nyfile by Nzfile grid corner point values (integer)•

For 2d simulations, the first 8 bytes store 2 integers in binary format: Nxfile and Nyfile. For 3d simulations, the
first 12 bytes store 3 integers in binary format: Nxfile, Nyfile, and Nzfile. These are the dimensions of the grid of
corner point values in the remainder of the file.

IMPORTANT NOTE: The Nxfile, Nyfile, Nzfile values are for a 2d or 3d grid of per-cell values, which overlay
the Nx by Ny by Nz grid of cells. Thus Nxfile = Nx, Nyfile = Ny, Nzfile = Nz is required. SPARTA will give an
error if the read_isurf Nx,Ny,Nz arguments do not match the first 2 or 3 integers in the file.

The remaining N bytes of the file are a series of one-byte integer values. There are N = Nxfile * Nyfile values in
2d, and N = Nxfile * Nyfile * Nzfile values in 3d. Each value is a single byte integer from 1 to 255 inclusive,
since surface element type values must be > 0.

IMPORTANT NOTE: The corner point values are a 2d or 3d regular array which must be ordered as follows. The
x indices (1 to Nxfile) vary fastest, then the y indices (1 to Nyfile), and the z indices slowest (1 to Nzfile). These
will be assigned to each grid cell in the Nx by Ny by Nz simulation domain. For mapping type values to grid
cells, the ordering of the regular array of grid cells in the simulation domain is the same: their x indices vary
fastest, then y, and their z indices very slowest.

The type value for each grid cell is used to assign a type value to each surface element created in that grid cell by
the marching cubes or squares algorithm.

The push keyword specifies whether or not (yes or no) to "push" grid corner points values to their
minimum/maximum possible values, i.e. 0 or 255 respectively. Each corner point value which is below (above)

383

the specified thresh value is and is also entirely surrounded by neighbor corner point values which are also below
(above) the thresh value is reset to 0 (255). In 2d, there are 8 corner points surrouding each interior corner point,
i.e. all corner points on the face of the 2x2 set of grid cells which surround the interior point. In 3d, there are 26
corner points surrouding each interior corner point, i.e. all corner points on the face of the 2x2x2 set of grid cells
which surround the interior point. The purpose of this operation is to reset corner point values to 0 if they are fully
exterior to the surface object(s), and likewise to 255 if they are fully interior to the surface object(s).

Note that the push is a one-time operation, performed when the corner point values are read in, before the first set
of surface elements are created by the marching cubes or marching squares algorithms.

The default for the push keyword is yes.

The read keyword specifies how the input file of grid corner point values is read. If the value is serial, which is
the default, then only a single proc reads the file, a chunk of values at at time. They are broadcast to other
processors, and each scans them for corner point values that correspond to grid cells it owns. If the value is
parallel, then each proc opens the input file and reads a N/P portion of the corner point values, where N is the # of
corner point values, and P is the # of procs. Additional communication is then performed to communicate the
corner point values where they are needed by each grid cell that owns one of the corner point values. The parallel
option can be faster for simulations with large grid corner point files and large numbers of processors.

Restrictions:

This command can only be used after the simulation box is defined by the create_box command, and after a grid
has been created by the create_grid command. If particles already exist in the simulation, you must insure
particles do not end up inside the set of implicit surfaces.

Simulations with implicit surfaces cannot perform grid adaptation.

Related commands:

read_surf, write_surf, fix ablate

Default:

The optional keyword defaults are group = all, type = no, push = yes, precision int, and read serial.

384

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

read_particles command

Syntax:

read_particles file Nstep

file = dump file to read snapshot from•
Nstep = timestep to read•

Examples:

read_particles dump.sphere 10500

Description:

Read a snapshot of particles from a previously created dump file and add them to the simulation domain. This is a
means of reading in particles from a previous SPARTA simulation or created as output by another code. The
create_particles, fix emit/face, and read_restart commands are alternate ways to generate particles for a
simulation.

The dump file must be in the SPARTA format created by the dump particles command which is described on its
doc page.

Currently, each line of particle data in the file must have 8 fields in the following order. At some point we may
generalize this format.

id, type, x, y, z, vx, vy, vz

The id is any positive integer, which can simply be set to values from 1 to Nparticles if desired. The type is the
species ID from 1 to Nspecies. The value corresponds to the order in which species are defined in the current
input script via the species command. The x,y,z values are the particle coordinates which must be inside (or on the
surface of) the simulation box. If a particle is outside the box it will be skipped when the file is read. For 2d or
axisymmetric simulations z = 0.0 should be used, though SPARTA does not check for this. The vx,vy,vz values
are the particle velocity. The rotational and vibrational energies for the new particles are set to 0.0.

When the reading of particles is complete, the number of particles read is printed to the screen. If the number is
smaller than the particles in the file, it is because some were outside the simulation box.

A check is made for any particle inside a surface object which triggers an error. However the check is only for
grid cells entirely inside a surface object. Particles in grid cells which are cut by surfaces are not checked. It is
your responsibility to insure particles close to surfaces are actually outside the surface object. If this is not the
case, errors may be triggered once particles begin to move.

Restrictions: none

Related commands:

create_particles, fix emit/face

Default: none

385

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

read_restart command

Syntax:

read_restart file keyword args ...

file = name of binary restart file to read in•
zero or one keyword/args pair may be listed•
keywords = gridcut or balance

gridcut arg = cutoff
 cutoff = acquire ghost cells up to this far away (distance units)

balance args = same as for balance_grid command

•

Examples:

read_restart save.10000
read_restart restart.*
read_restart flow.*.%
read_restart save.10000 gridcut -1.0
read_restart save.10000 balance rcb cell

Description:

Read in a previously saved simulation from a restart file. This allows continuation of a previous run on the same
or different number of processors. Information about what is stored in a restart file is given below. Basically this
operation will re-create the simulation box with all its particles, the hierarchical grid used to track particles, and
surface elements embedded in the grid, all with their attributes at the point in time the information was written to
the restart file by a previous simluation.

Although restart files are saved in binary format to allow exact regeneration of information, the random numbers
used in the continued run will not be identical to those used if the run had been continued. Hence the new run will
not be identical to the continued original run, but should be statistically similar.

IMPORTANT NOTE: Because restart files are binary, they may not be portable to other machines. SPARTA will
print an error message if it cannot read a restart file for this reason.

If a restarted run is performed on the same number of processors as the original run, then the assignment of grid
cells (and their particles) to processors will be the same as in the original simulation. If the processor count
changes, then the assignment will necessarily be different. In particular, even if the original assignment was
"clumped", meaning each processor's cells were geometrically compact, the new assignment will not be clumped;
it will be "dispersed". See Section 6.8 of the manual for an explanation of clumped and dispersed grid cell
assignments and their relative performance trade-offs.

Note that the restart file contains the setting for the global gridcut command. If it is >= 0.0 and the assignment of
grid cells to processors is "dispersed" (as described in the preceeding paragraph), and there are surface elements
defined in the restart file, an error will be triggered. This is because the read_restart command needs to mark all
the grid cells as inside vs outside the defined surface and cannot do this without ghost cell information. As
explained on the doc page for the global gridcut command, ghost cells cannot be setup with gridcut >= 0.0 and
"dispersed" grid cells.

386

https://sparta.github.io

The solution is to use one of the two keywords listed above, either gridcut or balance. The former allows you to
reset the grid cutoff to -1.0 so that ghost cells can be setup. Note however that this means each processor will own
a copy of all grid cells (at least until you change it later), which may be undesirable or even impossible for large
problems if it requires too much memory. The other solution is to use the balance keyword to trigger a re-balance
of the grid cells to processors as soon as the read_restart command reads them in. The arguments for the balance
keyword are identical to those for the balance_grid command. If you choose a balancing style that results in a
"clumped" assignment, then ghost cells will be setup successfully.

NOTE: Only the gridcut or the balance keyword can be used, not both of them.

Similar to how restart files are written (see the write_restart and restart commands), the restart filename can
contain two wild-card characters. If a "*" appears in the filename, the directory is searched for all filenames that
match the pattern where "*" is replaced with a timestep value. The file with the largest timestep value is read in.
Thus, this effectively means, read the latest restart file. It's useful if you want your script to continue a run from
where it left off. See the run command and its "upto" option for how to specify the run command so it doesn't
need to be changed either.

If a "%" character appears in the restart filename, SPARTA expects a set of multiple files to exist. The restart and
write_restart commands explain how such sets are created. Read_restart will first read a filename where "%" is
replaced by "base". This file tells SPARTA how many processors created the set and how many files are in it.
Read_restart then reads the additional files. For example, if the restart file was specified as save.% when it was
written, then read_restart reads the files save.base, save.0, save.1, ... save.P-1, where P is the number of
processors that created the restart file.

Note that P could be the total number of processors in the previous simulation, or some subset of those processors,
if the fileper or nfile options were used when the restart file was written; see the restart and write_restart
commands for details. The processors in the current SPARTA simulation share the work of reading these files;
each reads a roughly equal subset of the files. The number of processors which created the set can be different
than the number of processors in the current SPARTA simulation. This can be a fast mode of input on parallel
machines that support parallel I/O.

A restart file stores only the following information about a simulation, as specified by the associated commands:

units•
dimension•
simulation box size and boundary conditions•
global settings•
particle species info•
mixtures•
geometry of the hierarchical grid that overlays the simulation domain as created or read from a file•
geometry of all defined surface elements•
group definitions for grid cells and surface elements•
custom attributes for particles, grid cells, or surface elements•
current simulation time•
current timestep size•
current timestep number•

No other information is stored in the restart file. Specifically, information about these simulation entities and their
associated commands is NOT stored:

random number seed•
computes•

387

fixes•
collision model•
chemistry (reaction) model•
surface collision models•
surface reaction models•
assignment of surfaces/boundaries to surface models•
variables•
regions•
output options for stats, dump, restart files•

This means any information specified in the original input script by these commands needs to be re-specified in
the restart input script, assuming the continued simulation needs the information.

Also note that many commands can be used after a restart file is read, to override a setting that was stored in the
restart file. For example, the global command can be used to reset the values of its specified keywords. If a global
command is used in the input file before the restart file is read, then it will be overriden by values in the restart
file. The only exception is the *mem/limit* command, since it affects how the restart file is processed.

In particular, take note of the following issues:

The status of time-averaging fixes, such as fix ave/time, fix ave/grid, fix ave/surf, does not carry over into the
restarted run. E.g. if the ave running option is used with those commands in the original script and again specified
in the restart script, the running averaged quantities do not persist into the new run.

The surf_modify command must be used in the restart script to assign surface collision models, specified by the
surf_collide command, to all global boundaries of type "s", and to any surfaces contained in the restart file, as
read in by the read_surf command.

If a collision model is specified in the restart script, and the collide_modify vremax or remain command is used to
enable Vremax and fractional collision count to persist for many timesteps, no information about these quantities
persists from the original simulation to the restarted simulation. The initial run in the restart script will re-initialize
these data structures.

As noted above, custom attributes of particles, grid cells, or surface elements defined in the previous input script
and stored in the restart file, will be re-assigned when the restart file is read.

If an input script command which normally defines a custom attribute is specified, e.g. fix ambipolar, then if the
custom data for that attribute already exists, it will be re-used. If a corresponding input script command is not
used, then the custom data will be stored in the simulation (with particle in this case), but not be used, which can
be inefficient. The custom remove command can be used after the restart file is read, to delete unneded custom
attributes and their data.

Restrictions: none

Related commands:

read_grid, read_surf, write_restart, restart

Default: none

388

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

read_surf command

Syntax:

read_surf filename keyword args ...

filename = name of surface file•
zero or more keyword/args pairs may be appended•
keyword = type or custom or origin or trans or atrans or ftrans or scale or rotate or transparent or invert
or clip or group or typeadd or particle or file

type arg = none
 NOTE: if the type or custom keywords are used, they must come first

custom args = name datatype Nc
 name = name of custom per-surf vector or array
 datatype = int or float = for integer or floating point values
 Nc = 0 for a vector (single value), Nc >= 1 for an array (one or more values)
 NOTE: if the type or custom keywords are used, they must come first

origin args = Ox Oy Oz
 Ox,Oy,Oz = set origin of surface to this point (distance units)

trans args = Dx Dy Dz
 Dx,Dy,Dz = translate origin by this displacement (distance units)

atrans args = Ax Ay Az
 Ax,Ax,Az = translate origin to this absolute point (distance units)

ftrans args = Fx Fy Fz
 Fx,Fy,Fz = translate origin to this fractional point in simulation box

scale args = Sx Sy Sz
 Sx,Sy,Sz = scale surface by these factors around origin

rotate args = theta Rx Ry Rz
 theta = rotate surface by this angle in counter-clockwise direction (degrees)
 Rx,Ry,Rz = rotate around vector starting at origin pointing in this direction

transparent args = none
invert args = none
clip args = none or fraction

 fraction = push points close to the box boundary to the boundary (optional)
group arg = group-ID

 group-ID = new or existing surface group to assign the surface elements to
typeadd arg = Noffset

 Noffset = add Noffset to the type value of each element
particle args = none or check or keep

 none = allow no particles in simulation when read surfs (default)
 check = delete particles inside surfs or in cells intersected by surfs
 keep = keep all particles

file args = identical to those defined for the write_surf command
 NOTE: if used, the file keyword must come last

•

Examples:

read_surf surf.sphere
read_surf surf.sphere type custom temperature float 0
read_surf surf.sphere group sphere2 typeadd 1
read_surf surf.file trans 10 5 0 scale 3 3 3 invert clip
read_surf surf.file trans 10 5 0 scale 3 3 3 invert clip 1.0e-6
read_surf surf.file trans 10 5 0 scale 3 3 3 invert clip file tmp.surfs
read_surf surf.file trans 10 5 0 scale 3 3 3 invert clip file tmp.surfs.% points no nfile 32

Description:

389

https://sparta.github.io

Read the geometry of a surface from the specified file. In SPARTA, a "surface" is a collection of surface elements
that represent the surface(s) of one or more physical objects which will be embedded in the global simulation box.
Surfaces can be explicit or implicit. This command reads explicit surfaces from a file containing a list of explicit
surfaces. See the read_isurf command to read implicit surfaces from a different kind of file. See the Howto 6.13
section of the manual for an explantion of explicit versus implicit surfaces as well as distributed versus
non-distributed storage. You cannot mix explicit and implicit surfaces in the same simulation.

Surface elements are triangles in 3d or line segments in 2d. Surface elements for each physical object are required
to be a complete, connected set that tile the entire surface of the object. See the discussion of watertight objects
below.

Particles collide with surface elements as they advect. Each surface element is assigned to a collision model,
specified by the surf_collide command which affects how a particle bounces off the surface. Each surface element
can optionally be assigned to a reaction model, specified by the surf_react command which determines if any
surface chemistry occurs during a collision. Statistics for each surface element due to their interactions with
particles can be tallied via the compute surf command, time-averaged via the fix ave/surf command, and ouput via
the dump surface command.

Surface elememts can be assigned to surface groups via the group surf command. Surface group IDs are used by
other commands to operate on selected sets of elements. This command has group and typeadd keywords which
can be used to help assign different elements or different objects to different groups.

Explicit surface elements can be stored in a distributed fashion (each processor only stores elements which
overlap grid cells it owns or has a ghost cell copy of). Or each processor can store a copy of all surface elements
(the default). See the global surfs command to change this setting.

Note that the read_surf command can be used multiple times to read multiple objects from multiple files and add
them to the simulation domain. The format of a surface file for explicit elements is discussed below. Optional
keywords allow the vertices in the file to be translated, scaled, and rotated in various ways. This allows a single
surface file, e.g. containing a unit sphere, to be used multiple times in a single simulation or in different
simulations.

The tools directory contains tools that can create surface files with simple geometric objects (spheres, blocks, etc).
It also has tools that can convert surface files in other formats to the SPARTA format for explicit surfaces, e.g. for
files created by a mesh-generation program.

If all the surface elements are contained in a single file, the specified file can be a text file or a gzipped text file
(detected by a .gz suffix).

If a "%" character appears in the surface filename, SPARTA expects a set of multiple files to exist. The write_surf
command explains how such sets are created. Read_surf will first read a filename where "%" is replaced by
"base". This file tells SPARTA how many total surfaces and files are in the set (i.e. just the header information
described below). The read_surf command then reads the additional files. For example, if the surface file was
specified as save.% when it was written, then read_surf reads the files save.base, save.0, save.1, ... save.P-1,
where P is the number of processors that created the surface file.

Note that P could be the total number of processors in the previous simulation, or some subset of those processors,
if the fileper or nfile options were used when the surface file was written; see the write_surf command for details.
The processors in the current SPARTA simulation share the work of reading these files; each reads a roughly
equal subset of the files. The number of processors which created the set can be different than the number of
processors in the current SPARTA simulation. This can be a fast mode of input on parallel machines that support

390

parallel I/O.

The remainder of this section describes the format of a single surface file, whether it is the only file or one of
multiple files flagged with a processor number.

A surface file for explicit surfaces has a header and a body. The header appears first. The first line of the header is
always skipped; it typically contains a description of the file. Then lines are read one at a time. Lines can have a
trailing comment starting with '#' that is ignored. If the line is blank (only whitespace after comment is deleted), it
is skipped. If the line contains a header keyword, the corresponding value is read from the line. If it doesn't
contain a header keyword, the line begins the body of the file.

The body of the file contains one or more sections. The first line of a section has only a keyword. The next line is
skipped. The remaining lines of the section contain values. The number of lines in a section depends on the
section keyword as described below. Zero or more blank lines can be used between sections. Sections can appear
in any order.

The formatting of individual lines in the surface file (indentation, spacing between words and numbers) is not
important except that header and section keywords must be capitalized as shown and can't have extra white space
between their words.

These are the recognized header keywords. Header lines can come in any order. The value(s) are read from the
beginning of the line. Thus the keyword points should be in a line like "1000 points".

files = # of files in set (only for base file, see below)•
points = # of points in surface (optional, see below)•
lines = # of line segments in surface (only allowed for 2d)•
triangles = # of triangles in surface (only allowed for 3d)•

The files keyword only appears in the "base" file for a set of multiple files indicated by the "%" character in the
filename. It tells SPARTA how many additional files exist in the set. A "base" file has no additional sections, i.e.
no body.

The points keyword is optional (see below). For a set of multiple files, it cannot appear in the "base" file, but only
in individual files in the set.

The points, lines, triangles keywords refer to the number of points, lines, triangles in an individual file. Except in
the case of a "base" file for a set of multiple files. In that case, the lines and triangles keywords give the number
of lines or triangles in the entire set.

These are the recognized section keywords for the body of the file.

Points, Lines, Triangles•

The Points section consists of N consecutive entries, where N = # of points, each of this form:

index x y z (for 3d)
index x y (for 2d)

The index value is ignored; it is only added to assist in examining the file. When lines and triangles reference
point indices they are simply ordered from 1 to N, regardless of the actual value of the index in the file. X,y,z are
the coordinates of the point in distance units. Note that for 2d simulations, z should be omitted.

391

IMPORTANT NOTE: Unless points are on the surface of the simulation box, they will be part of multiple lines or
triangles. However, there is no requirement that each point appear exactly once in the Points list. For example, a
point that is the common corner point of M triangles, could appear 1 or 2 or up to M times. However, if the same
point appears multiple times in the Points list, the coordinates of all copies must be numerically identical, in order
for SPARTA to verify the surface is a watertight object, as discussed below.

IMPORTANT NOTE: The points keyword and Points section are not required. You must either use both or
neither. As explained next, an optional format for the Lines or Triangles sections includes point coordinates
directly with each line or triangle.

The Lines section is only allowed for 2d simulations and consists of N entries, where N = # of lines. All entries
must be in the same format, either A or B. If a Points section was included, use format A. If it was not, use format
B.

line-ID (type) p1 p2 (custom1) (custom2) ... # format A
line-ID (type) p1x p1y p2x p2y (custom1) (custom2) ... # format B

The line-ID is stored internally with the line and can be output by the dump surf command. If the read_surf
commmand is reading a single file, the line-IDs should be unique values from 1 to N where N is the number of
lines specified in the header of the file. For a set of multiple files, each line in the collection of all files should
have a unique ID, and the IDs should range from 1 to N, where N is the number of lines specified in the base file.

Note that SPARTA does not check line-IDs for uniqueness, only that the smallest values is 1 and the largest value
is N. Also note that lines in an individual file (single or multiple) do not need to be listed by ID order; they can be
in any order.

IMPORTANT NOTE: If the read_surf command is used when lines already exist, i.e. to add new lines, then each
line-ID is incremented by Nprevious = the # of lines that already exist.

Type is an optional integer value and can only be specified if the type keyword is used. It must be a positive
integer for each line. If not specified, the type of each line is set to 1. Line IDs and types can be used to assign
lines to surface groups via the group surf command.

For format A, p1 and p2 are the indices of the 2 end points of the line segment, as found in the Points section.
Each is a value from 1 to the # of points, as described above. For format B, (p1x,p1y) and (p2x,p2y) are the (x,y)
coordinates of the two points (1,2) in the line.

The ordering of p1, p2 is important as it defines the direction of the outward normal for the line segment when a
particle collides with it. Molecules only collide with the "outer" edge of a line segment. This is defined by a
right-hand rule. The outward normal N = (0,0,1) x (p2-p1). In other words, a unit z-direction vector is crossed into
the vector from p1 to p2 to determine the normal.

The custom values are optional and can only be specified if the custom keyword is used one or more times. Each
use of the custom keyword determines how many values are appended to each line. For a custom per-surf vector,
a single value is appended. For a custom per-surf array, Nc values are appended. The values are assigned to
custom vectors or arrays in the order the custom keywords are specified. For example, for this read_surf
command, 4 custom values should be added to the end of each line in the Lines section of the input file:

read_surf surf.sphere type custom temperature float 0 custom flags int 3

The first floating-point value will be the temperature, the next 3 integers will be flags.

392

The Triangles section is only allowed for 3d simulations and consists of N entries, where N = # of triangles. All
entries must be in the same format, either A or B. If a Points section was included, use format A. If it was not, use
format B.

tri-ID (type) p1 p2 p3 (custom1) (custom2) ... # format A
tri-ID (type) p1x p1y p1z p2x p2y p2z p3x p3y p3z (custom1) custom2) ... # format B

The tri-ID is stored internally with the triangle and can be output with the dump surf comand. If the read_surf
command is reading a single file, the tri-IDs should be unique values from 1 to N where N is the number of
triangles specified in the header of the file. For a set of multiple files, each triangle in the collection of all files
should have a unique ID, and the IDs should range from 1 to N, where N is the number of triangles specified in
the base file.

Note that SPARTA does not check tri-IDs for uniqueness, only that the smallest values is 1 and the largest value
is N. Also note that triangles in an individual file (single or multiple) do not need to be listed by ID order; they
can be in any order.

IMPORTANT NOTE: If the read_surf command is used when triangles already exist, i.e. to add new triangles,
then each tri-ID is incremented by Nprevious = the # of triangles that already exist.

Type is an optional integer value and can only be specified if the type keyword is used. It must be a positive
integer for each triangle. If not specified, the type of each triangle is set to 1. Triangle IDs and types can be used
to assign triangles to surface groups via the group surf command.

For format A, p1, p2, and p3 are the indices of the 3 corner points of the triangle, as found in the Points section.
Each is a value from 1 to the # of points, as described above. For format B, (p1x,p1y,p1z), (p2x,p2y,p2z), and
(p3x,p3y,p3z) are the (x,y,z) coordinates of the three corner points (1,2,3) of the triangle.

The ordering of p1, p2, p3 is important as it defines the direction of the outward normal for the triangle when a
particle collides with it. Molecules only collide with the "outer" face of a triangle. This is defined by a right-hand
rule. The outward normal N = (p2-p1) x (p3-p1). In other words, the edge from p1 to p2 is crossed into the edge
from p1 to p3 to determine the normal.

The custom values are optional and can only be specified if the custom keyword is used one or more times. Each
use of the custom keyword determines how many values are appended to each triangle. For a custom per-surf
vector, a single value is appended. For a custom per-surf array, Nc values are appended. The values are assigned
to custom vectors or arrays in the order the custom keywords are specified. For example, for this read_surf
command, 4 custom values should be added to the end of each triangle in the Triangles section:

read_surf surf.sphere type custom temperature float 0 custom flags int 3

The first floating-point value will be the temperature, the next 3 integers will be flags.

The following optional keywords affect the format of the surface file(s) that are read. If used, these two keywords
must come before any other keywords.

The type keyword means that each surface element in the Lines or Triangles section will include a surface
element type, which is a positive integer. See the discussion of the format of the Lines and Triangles sections
above for details.

The custom keyword allows a custom per-surf vector or array to be created and initialized. Custom vectors or
arrays associate a single value or multiple values with each surface element. They can be output by the dump surf

393

command and uses as inputs by other commands. For example, many of the models for the surf_collide command
take temperature as an input; use of a per-surf vector allows the temperature of individual surface elements to be
specified.

The name argument is the name assigned to the new custom vector or array. The datatype argument is int or float
which determines whether the vector/array stores integer or floating point values. The final Nc argument is 0 for a
per-surf vector and an integer >= 1 for an array with Nc columns. A per-surf vector stores a single value per
surface element; a per-surf array stores Nc values per element.

The custom keyword can be used multiple times. See the discussion of the format of the Lines and Triangles
sections above for details.

If the read_surf command is used multiple times and the same custom options are not used when reading each
file, then the same custom vectors or arrays attributes will be defined for all surface elements. However, their
values will only be initialized for the elements in the surface files which included custom values. Otherwise the
custom attributes of elements that were not specified in surface files are are initialized to zero.

The following optional keywords affect the geometry of the read-in surface elements. The geometric
transformations they describe are performed in the order they are listed, which gives flexibility in how surfaces
can be manipulated.

Note that the order of these arguments may be important; e.g. performing an origin operation followed by a rotate
operation may not be the same as a rotate operation followed by an origin operation.

Most of the keywords perform a geometric transformation on all the vertices in the surface file with respect to an
origin point. By default the origin is (0.0,0.0,0.0), regardless of the position of individual vertices in the file.

The origin keyword resets the origin to the specified Ox,Oy,Oz. This operation has no effect on the vertices.

The trans keyword shifts or displaces the origin by the vector (Dx,Dy,Dz). It also displaces each vertex by
(Dx,Dy,Dz).

The atrans keyword resets the origin to an absolute point (Ax,Ay,Az) which implies a displacement (Dx,Dy,Dz)
from the current origin. It also displaces each vertex by (Dx,Dy,Dz).

The ftrans keyword resets the origin to a fractional point (Fx,Fy,Fz). Fractional means that Fx = 0.0 is the lower
edge/face in the x-dimension and Fx = 1.0 is the upper edge/face in the x-dimension, and similarly for Fy and Fz.
This change of origin implies a displacement (Dx,Dy,Dz) from the current origin. This operation also displaces
each vertex by (Dx,Dy,Dz).

The scale keyword does not change the origin. It computes the displacement vector of each vertex from the origin
(delx,dely,delz) and scales that vector by (Sx,Sy,Sz), so that the new vertex coordinate is (Ox + Sx*delx,Oy +
Sy*dely,Oz + Sz*delz).

The rotate keyword does not change the origin. It rotates the coordinates of all vertices by an angle theta in a
counter-clockwise direction, around the vector starting at the origin and pointing in the direction Rx,Ry,Rz. Any
rotation can be represented by an appropriate choice of origin, theta and (Rx,Ry,Rz).

The transparent keyword flags all the read in surface elements as transparent, meaning particles pass through
them. This is useful for tallying flow statistics. The surf_collide transparent command must also be used to assign
a transparent collision model to those the surface elements. The compute surf command will tally fluxes
differently for transparent surf elements. The Section 6.15 doc page provides an overview of transparent surfaces.

394

See those doc pages for details.

The invert keyword does not change the origin or any vertex coordinates. It flips the direction of the outward
surface normal of each surface element by changing the ordering of its vertices. Since particles only collide with
the outer surface of a surface element, this is a mechanism for using a surface files containing a single sphere (for
example) as either a sphere to embed in a flow field, or a spherical outer boundary containing the flow.

The clip keyword does not change the origin. It truncates or "clips" a surface that extends outside the simulation
box in the following manner. In 3d, each of the 6 clip planes represented by faces of the global simulation box are
considered in turn. Any triangle that straddles the face (with points on both sides of the clip plane), is truncated at
the plane. New points along the edges that cross the plane are created. A triangle may also become a trapezoid, in
which case it turned into 2 triangles. Then all the points on the side of the clip plane that is outside the box, are
projected onto the clip plane. Finally, all triangles that lie in the clip plane are removed, as are any points that are
unused after the triangle removal. After this operation is repeated for all 6 faces, the remaining surface is entirely
inside the simulation box, though some of its triangles may include points on the faces of the simulation box. A
similar operation is performed in 2d with the 4 clip edges represented by the edges of the global simulation box.

IMPORTANT NOTE: If a surface you clip crosses a periodic boundary, as specified by the boundary command,
then the clipping that takes place must be consistent on both the low and high end of the box (in the periodic
dimension). This means any point on the boundary that is generated by the clip operation should be generated
twice, once on the low side of the box and once on the high side. And those two points must be periodic images of
each other, as implied by periodicity. If the surface you are reading does not clip in this manner, then SPARTA
will likely generate an error about mis-matched or inconsistent cells when it attempts to mark all the grid cells and
their corner points as inside vs outside the surface.

If you use the clip keyword, you should check the resulting statistics of the clipped surface printed out by this
command, including the minimum size of line and triangle edge lengths. It is possible that very short lines or very
small triangles will be created near the box surface due to the clipping operation, depending on the coordinates of
the initial unclipped points.

If this is the case, an optional fraction argument can be appended to the clip keyword. Fraction is a unitless value
which is converted to a distance delta in each dimension where delta = fraction * (boxhi - boxlo). If a point is
nearer than delta to the lo or hi boundary in a dimension, the point is moved to be on the boundary, before the
clipping operation takes place. This can prevent tiny surface elements from being created due to clipping. If
fraction is not specified, the default value is 0.0, which means points are not moved. If specified, fraction must be
a value between 0.0 and 0.5.

Note that the clip operation may delete some surface elements and create new ones. Likewise for the points that
define the end points or corner points of surface element lines (2d) or triangles (3d). The resulting altered set of
surface elements can be written out to a file by the write_surf command, which can then be used an input to a new
simulation or for post-processing and visualization.

IMPORTANT NOTE: When the clip operation deletes or adds surface elements, the line-IDs or tri-IDs will be
renumbered to produce IDs that are consective values from 1 to the # of surface elements. The ID of a surface
element that is unclipped may change due to this reordering.

The following optional keywords affect group and type settings for the read-in surface elements as well as how
particles are treated when surface elements are added.

Surface groups are collections of surface elements. Each surface element belongs to one or more surface groups;
all elements belong to the "all" group, which is created by default. Surface group IDs are used by other commands
to identify a group of suface elements to operate on. See the group surf command for more details.

395

Every surface element also stores a type which is a positive integer. Type values are useful for flagging subsets of
elements or different objects in the surface file. For example, a patch of triangles on a sphere. Or one sphere out
of several that the file contains. Surface element types can be used to define surface groups. See the group surf
command for details.

The group keyword specifies an extra surface group-ID to assign all the read-in surface elements to. All the
read-in elements are assigned to the "all" group and to group-ID. If group-ID does not exist, a new surface group
is created. If it does exist the read-in surface elements are added to that group.

The typeadd keyword defines an Noffset value which is added to the type of each read-in surface element. The
default is Noffset = 0, which means the read-in type values are not altered. If type values are not included in the
file, they default to 1 for every element, but can still be altered by the typeadd keyword.

Note that use of the group and typeadd keywords allow the same surface file to be read multiple times (e.g. with
different origins, tranlations, rotations, etc) to define multiple objects, and assign their surface elements to
different groups or different type values.

The particle keyword determines how particles in the simulation are affected by the new surface elements. If the
setting is none, which is the default, then no particles can exist in the simulation. If the setting is check, then
particles in grid cells that are inside the new watertight surface object(s) or in grid cells intersected by the new
surface elements are deleted. This is to insure no particles will end up inside a surface object, which will typically
generate errors when particles move. If the setting is keep then no particles are deleted. It is up to you to insure
that no particles are inside surface object(s), else an error may occur later. This setting can be useful if a
remove_surf was used to remove a surface object, and a new object is being read in, and you know the new object
is smaller than the one it replaced. E.g. for a model of a shrinking or ablating object.

IMPORTANT NOTE: The final optional keyword is file, which must be must be the last keyword specified. This
is because all the remaining arguments in the read_surf command are passed to the write_surf command.

If the file keyword is used, the surfaces will be written out to the specified filename immediately after they are
read in (and transformed by any of the optional keywords).

The arguments for this keyword are identical to those used for the write_surf command. This includes a file name
with optional "*" and "%" wildcard characters as well as the write_surf optional keyword/arguments.

The format for the output file is the same as for the file read by this command.

Note that it can be useful to write out a new surface file after it is read if clipping was performed. This is beacuse
the new file will contain surface elements altered by clipping and will not contain any surface elements removed
by clipping. This may include a renumbering of the surface element IDs.

Restrictions:

This command can only be used after the simulation box is defined by the create_box command, and after a grid
has been created by the create_grid command. If particles already exist in the simulation, you must insure
particles do not end up inside the added surfaces. See the particle keyword for options with regard to particles.

To read gzipped surface files, you must compile SPARTA with the -DSPARTA_GZIP option - see Section 2.2 of
the manual for details.

396

The clip keyword cannot be used when the global surfs explicit/distributed command has been used. This is
because we have not yet figured out how to clip distributed surfaces.

Every vertex in the final surface (after translation, rotation, scaling, etc) must be inside or on the surface of the
global simulation box. Note that using the clip operation guarantees that this will be the case.

The surface elements in a single surface file must represent a "watertight" surface. For a 2d simulation this means
that every point is part of exactly 2 line segments. For a 3d simulation it means that every triangle edge is part of
exactly 2 triangles. Exceptions to these rules allow for triangle edges (in 3d) that lie entirely in a global face of the
simulation box, or for line points (in 2d) that are on a global edge of the simulation box. This can be the case after
clipping, which allows for use of watertight surface object (e.g. a sphere) that is only partially inside the
simulation box, but which when clipped to the box becomes non-watertight, e.g. half of a sphere.

Note that this definition of watertight does not require that the surface elements in a file represent a single
physical object; multiple objects (e.g. spheres) can be represented, provided each is watertight.

Another restriction on surfaces is that they do not represent an object that is "infinitely thin", so that two sides of
the same object lie in the same plane (3d) or on the same line (2d). This will not generate an error when the
surface file is read, assuming the watertight rule is followed. However when particles collide with the surface,
errors will be generated if a particle hits the "inside" of a surface element before hitting the "outside" of another
element. This can occur for infinitely thin surfaces due to numeric round-off.

When running a simulation with multiple objects, read from one or more surface files, you should insure they do
not touch or overlap with each other. SPARTA does not check for this, but it will typically lead to unphysical
particle dynamics.

Related commands:

read_isurf, write_surf

Default:

The default origin for the vertices in the surface file is (0,0,0). The defaults for group = all, typeadd = 0, particle =
none.

397

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

region command

Syntax:

region ID style args keyword value ...

ID = user-assigned name for the region•
style = block or cylinder or plane or sphere or union or intersect

block args = xlo xhi ylo yhi zlo zhi
 xlo,xhi,ylo,yhi,zlo,zhi = bounds of block in all dimensions (distance units)

cylinder args = dim c1 c2 radius lo hi
 dim = x or y or z = axis of cylinder
 c1,c2 = coords of cylinder axis in other 2 dimensions (distance units)
 radius = cylinder radius (distance units)
 lo,hi = bounds of cylinder in dim (distance units)

plane args = px py pz nx ny nz
 px,py,pz = point on the plane (distance units)
 nx,ny,nz = direction normal to plane (distance units)

sphere args = x y z radius
 x,y,z = center of sphere (distance units)
 radius = radius of sphere (distance units)

union args = N reg-ID1 reg-ID2 ...
 N = # of regions to follow, must be 2 or greater
 reg-ID1,reg-ID2, ... = IDs of regions to join together

intersect args = N reg-ID1 reg-ID2 ...
 N = # of regions to follow, must be 2 or greater
 reg-ID1,reg-ID2, ... = IDs of regions to intersect

•

zero or more keyword/value pairs may be appended•
keyword = side

side value = in or out
in = the region is inside the specified geometry
out = the region is outside the specified geometry

•

Examples:

region 1 block -3.0 5.0 INF 10.0 INF INF
region 2 sphere 0.0 0.0 0.0 5 side out
region void cylinder y 2 3 5 -5.0 INF
region outside union 4 side1 side2 side3 side4

Description:

This command defines a geometric region of space. Various other commands use regions. See the group grid,
group surf, and dump_modify commands for examples.

Commands which use regions typically test whether a point is contained in the region or not. For this purpose,
coordinates exactly on the region boundary are considered to be interior to the region. This means, for example,
for a spherical region, a point on the sphere surface would be part of the region if the sphere were defined with the
side in keyword, but would not be part of the region if it were defined using the side out keyword. See more
details on the side keyword below.

The lo/hi values for the block or cylinder styles can be specified as INF which means a large negative or positive
number (1.0e20).

398

https://sparta.github.io

For style cylinder, the c1,c2 params are coordinates in the 2 other dimensions besides the cylinder axis dimension.
For dim = x, c1/c2 = y/z; for dim = y, c1/c2 = x/z; for dim = z, c1/c2 = x/y. Thus the third example above
specifies a cylinder with its axis in the y-direction located at x = 2.0 and z = 3.0, with a radius of 5.0, and
extending in the y-direction from -5.0 to infinity.

The union style creates a region consisting of the volume of all the listed regions combined. The intersect style
creates a region consisting of the volume that is common to all the listed regions.

IMPORTANT NOTE: Regions in SPARTA are always 3d geometric objects, regardless of whether the dimension
of the simulation 2d or 3d. Thus when using regions in a 2d simulation, for example, you should be careful to
define the region so that its intersection with the 2d x-y plane of the simulation has the 2d geometric extent you
want.

The side keyword determines whether the region is considered to be inside or outside of the specified geometry.
Using this keyword in conjunction with union and intersect regions, complex geometries can be built up. For
example, if the interior of two spheres were each defined as regions, and a union style with side = out was
constructed listing the region-IDs of the 2 spheres, the resulting region would be all the volume in the simulation
box that was outside both of the spheres.

Restrictions: none

Related commands:

dump_modify

Default:

The option default is side = in.

399

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

remove_surf command

Syntax:

remove_surf surfID

surfID = group ID for which surface elements to remove•

Examples:

remove_surf topsurf

Description:

Remove a group of surface elements that have previously been read-in via the read_surf command. The group
surf or read_surf can be used to assign each surface element to one or more groups. This command removes all
surface elements in the specified surfID group.

Note that the remaining surface elements must still constitute a "watertight" surface or an error will be generated.
The definition of watertight is explained in the Restrictions section of the read_surf doc page.

After surface elements have been deleted the IDs of the remaining surface points and elements are renumbered so
that the remaining N elements have IDs from 1 to N. The new list of surface elements can be output via the
write_surf or dump surf commands.

Restrictions: none

Related commands:

read_surf

Default: none

400

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

reset_timestep command

Syntax:

reset_timestep N

N = timestep number•

Examples:

reset_timestep 0
reset_timestep 4000000

Description:

Set the timestep counter to the specified value. This command normally comes after the timestep has been set by
reading a restart file via the read_restart command, or a previous simulation advanced the timestep.

The create_box command sets the timestep to 0; the read_restart command sets the timestep to the value it had
when the restart file was written.

Restrictions: none

This command cannot be used when any fixes are defined that keep track of elapsed time to perform certain kinds
of time-dependent operations. Examples are the fix ave/time, fix ave/grid, and fix ave/surf commands. Thus these
fixes should be specified after the timestep has been reset.

Resetting the timestep clears flags for computes that may have calculated some quantity from a previous run. This
means these quantity cannot be accessed by a variable in between runs until a new run is performed. See the
variable command for more details.

Related commands: none

Default: none

401

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

restart command

Syntax:

restart 0
restart N root keyword value ...
restart N file1 file2 keyword value ...

N = write a restart file every this many timesteps•
N can be a variable (see below)•
root = filename to which timestep # is appended•
file1,file2 = two full filenames, toggle between them when writing file•
zero or more keyword/value pairs may be appended•
keyword = fileper or nfile

fileper arg = Np
 Np = write one file for every this many processors

nfile arg = Nf
 Nf = write this many files, one from each of Nf processors

•

Examples:

restart 0
restart 1000 flow.restart
restart 1000 restart.*.equil
restart 10000 flow.%.1 flow.%.2 nfile 10
restart v_mystep flow.restart

Description:

Write out a binary restart file every so many timesteps, in either or both of two modes, as a run proceeds. A value
of 0 means do not write out any restart files. The two modes are as follows. If one filename is specified, a series
of filenames will be created which include the timestep in the filename. If two filenames are specified, only 2
restart files will be created, with those names. SPARTA will toggle between the 2 names as it writes successive
restart files.

Note that you can specify the restart command twice, once with a single filename and once with two filenames.
This would allow you, for example, to write out archival restart files every 100000 steps using a single filenname,
and more frequent temporary restart files every 1000 steps, using two filenames. Using restart 0 will turn off both
modes of output.

Similar to dump files, the restart filename(s) can contain two wild-card characters.

If a "*" appears in the single filename, it is replaced with the current timestep value. This is only recognized when
a single filename is used (not when toggling back and forth). Thus, the 3rd example above creates restart files as
follows: restart.1000.equil, restart.2000.equil, etc. If a single filename is used with no "*", then the timestep value
is appended. E.g. the 2nd example above creates restart files as follows: flow.restart.1000, flow.restart.2000, etc.

If a "%" character appears in the restart filename(s), then one file is written for each processor and the "%"
character is replaced with the processor ID from 0 to P-1. An additional file with the "%" replaced by "base" is
also written, which contains global information. For example, the files written on step 1000 for filename restart.%
would be restart.base.1000, restart.0.1000, restart.1.1000, ..., restart.P-1.1000. This creates smaller files and can

402

https://sparta.github.io

be a fast mode of output and subsequent input on parallel machines that support parallel I/O. The optional fileper
and nfile keywords discussed below can alter the number of files written.

Restart files are written on timesteps that are a multiple of N but not on the first timestep of a run or minimization.
You can use the write_restart command to write a restart file before a run begins. A restart file is not written on
the last timestep of a run unless it is a multiple of N. A restart file is written on the last timestep of a minimization
if N > 0 and the minimization converges.

Instead of a numeric value, N can be specifed as an equal-style variable, which should be specified as v_name,
where name is the variable name. In this case, the variable is evaluated at the beginning of a run to determine the
next timestep at which a restart file will be written out. On that timestep, the variable will be evaluated again to
determine the next timestep, etc. Thus the variable should return timestep values. See the stagger() and logfreq()
and stride() math functions for equal-style variables, as examples of useful functions to use in this context. Other
similar math functions could easily be added as options for equal-style variables.

For example, the following commands will write restart files every step from 1100 to 1200, and could be useful
for debugging a simulation where something goes wrong at step 1163:

variable s equal stride(1100,1200,1)
restart v_s tmp.restart

See the read_restart command for information about what is stored in a restart file.

Restart files can be read by a read_restart command to restart a simulation from a particular state. Because the file
is binary (to enable exact restarts), it may not be readable on another machine.

The optional nfile or fileper keywords can be used in conjunction with the "%" wildcard character in the specified
restart file name(s). As explained above, the "%" character causes the restart file to be written in pieces, one piece
for each of P processors. By default P = the number of processors the simulation is running on. The nfile or fileper
keyword can be used to set P to a smaller value, which can be more efficient when running on a large number of
processors.

The nfile keyword sets P to the specified Nf value. For example, if Nf = 4, and the simulation is running on 100
processors, 4 files will be written, by processors 0,25,50,75. Each will collect information from itself and the next
24 processors and write it to a restart file.

For the fileper keyword, the specified value of Np means write one file for every Np processors. For example, if
Np = 4, every 4th processor (0,4,8,12,etc) will collect information from itself and the next 3 processors and write
it to a restart file.

Restrictions: none

Related commands:

write_restart, read_restart

Default:

restart 0

403

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

run command

Syntax:

run N keyword values ...

value = # of integer timesteps N•
zero or more keyword/value pairs may be appended•
keyword = upto or start or stop or pre or post or every

upto value = none
start value = N1

 N1 = timestep at which 1st run started
stop value = N2

 N2 = timestep at which last run will end
pre value = no or yes
post value = no or yes
every values = M c1 c2 ...

 M = break the run into M-timestep segments and invoke one or more commands between each segment
 c1,c2,...,cN = one or more SPARTA commands, each enclosed in quotes
 c1 = NULL means no command will be invoked

•

Examples:

run 10000
run 1000000 upto
run 100 start 0 stop 1000
run 1000 pre no post yes
run 100000 start 0 stop 1000000 every 1000 "print 'Temp = $t'"
run 100000 every 1000 NULL

Description:

Run or continue a simulation for a specified number of timesteps.

A value of N = 0 is acceptable; only the statistics of the system are computed and printed without taking a
timestep.

The upto keyword means to perform a run starting at the current timestep up to the specified timestep. E.g. if the
current timestep is 10,000 and "run 100000 upto" is used, then an additional 90,000 timesteps will be run. This
can be useful for very long runs on a machine that allocates chunks of time and terminate your job when time is
exceeded. If you need to restart your script multiple times (reading in the last restart file), you can keep restarting
your script with the same run command until the simulation finally completes.

The start or stop keywords can be used if multiple runs are being performed and you want a variable or fix
command that changes some value over time (e.g. target temperature) to make the change across the entire set of
runs and not just a single run.

For example, consider these commands followed by 10 run commands:

variable myTemp equal ramp(300,500)
surf_collide 1 diffuse v_myTemp 0.5
run 1000 start 0 stop 10000
run 1000 start 0 stop 10000

404

https://sparta.github.io

...
run 1000 start 0 stop 10000

The ramp() function in the variable and its use in the "surf_collide" command will ramp the target temperature
from 300 to 500 during a run. If the run commands did not have the start/stop keywords (just "run 1000"), then
the temperature would ramp from 300 to 500 during the 1000 steps of each run. With the start/stop keywords, the
ramping takes place smoothly over the 10000 steps of all the runs together.

The pre and post keywords can be used to streamline the setup, clean-up, and associated output to the screen that
happens before and after a run. This can be useful if you wish to do many short runs in succession (e.g. SPARTA
is being called as a library which is doing other computations between successive short SPARTA runs).

By default (pre and post = yes), SPARTA zeroes statistical counts before every run and initializes other fixes and
computes as needed. And after every run it gathers and prints timings statistics. If a run is just a continuation of a
previous run (i.e. no settings are changed), the initial computation is not necessary. So if pre is specified as "no"
then the initial setup is skipped, except for printing statistical info. Note that if pre is set to "no" for the very 1st
run SPARTA performs, then it is overridden, since the initial setup computations must be done.

IMPORTANT NOTE: If your input script changes settings between 2 runs (e.g. adds a fix or compute), then the
initial setup must be performed. SPARTA does not check for this, but it would be an error to use the pre no option
in this case.

If post is specified as "no", the full timing and statistical output is skipped; only a one-line summary timing is
printed.

The every keyword provides a means of breaking a SPARTA run into a series of shorter runs. Optionally, one or
more SPARTA commands (c1, c2, ..., cN) will be executed in between the short runs. If used, the every keyword
must be the last keyword, since it has a variable number of arguments. Each of the trailing arguments is a single
SPARTA command, and each command should be enclosed in quotes, so that the entire command will be treated
as a single argument. This will also prevent any variables in the command from being evaluated until it is
executed multiple times during the run. Note that if a command itself needs one of its arguments quoted (e.g. the
print command), then you can use a combination of single and double quotes, as in the example above or below.

The every keyword is a means to avoid listing a long series of runs and interleaving commands in your input
script. For example, a print command could be invoked or a fix could be redefined, e.g. to reset a load balancing
parameter. Or this could be useful for invoking a command you have added to SPARTA that wraps some other
code (e.g. as a library) to perform a computation periodically during a long SPARTA run. See Section 8 of the
manual for info about how to add new commands to SPARTA. See Section 6.7 of the manual for ideas about how
to couple SPARTA to other codes.

With the every option, N total steps are simulated, in shorter runs of M steps each. After each M-length run, the
specified commands are invoked. If only a single command is specified as NULL, then no command is invoked.
Thus these lines:

compute t temp
variable myT equal c_t
run 6000 every 2000 "print 'Temp = $myT'"

are the equivalent of:

compute t temp
variable myT equal c_t
run 2000
print "Temp = $myT"

405

run 2000
print "Temp = $myT"
run 2000
print "Temp = $myT"

which does 3 runs of 2000 steps and prints the x-coordinate of a particular atom between runs. Note that the
variable "$q" will be evaluated afresh each time the print command is executed.

Note that by using the line continuation character "&", the run every command can be spread across many lines,
though it is still a single command:

run 100000 every 1000 &
 "print 'Minimum value = $a'" &
 "print 'Maximum value = $b'" &
 "print 'Temp = $c'"

If the pre and post options are set to "no" when used with the every keyword, then the 1st run will do the full
setup and the last run will print the full timing summary, but these operations will be skipped for intermediate
runs.

If you want SPARTA to exit early during the middle of a run when a condition is met, use fix halt.

Restrictions:

The number of specified timesteps N must fit in a signed 32-bit integer, so you are limited to slightly more than 2
billion steps (2^31) in a single run. However, you can perform successive runs to run a simulation for any number
of steps (ok, up to 2^63 steps).

Related commands:

fix halt

Default:

The option defaults are start = the current timestep, stop = current timestep + N, pre = yes, and post = yes.

406

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

scale_particles command

Syntax:

scale_particles mix-ID factor

mix-ID = ID of mixture to use when scaling particles•
factor = scale factor•

Examples:

scale_particles air 0.5
scale_particles air 4.0

Description:

Scale the number of particles in the simulation by cloning or deleting individual particles. This can be useful
between runs, or after reading a restart file, to increase or decrease the particle count before a new run command
is issued, as if the global fnum value had been changed. For example, an initial coarse simulation can be
performed, followed by a simulation at higher resolution.

Only particles of species in the specified mixture are considered for cloning/deleting. See the mixture command
for how it defines a collection of species.

The specified factor can be any value >= 0.0.

If factor < 1.0, then for each particle, a random number R is generated. If R > factor, the particle is deleted.

If factor > 1.0, then for each particle additional particles may be created, by cloning all attributes of the original
particle, except for a new random particle ID assigned to each new particle. E.g. if factor = 3.4, then two extra
particles are created, and a 3rd is created with probability 0.4.

Restrictions: none

Related commands:

create_particles

Default: none

407

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

seed command

Syntax:

seed Nvalue

Nvalue = seed for a random number generator (positive integer)•

Examples:

seed 5838959

Description:

This command sets the random number seed for a master random number generator. This generator is used by
SPARTA to initialize auxiliary random number generators, which in turn are used for all operations in the code
requiring random numbers. This means you can effectively run a statistically-independent simulation by simply
changing this single seed.

The various random number generators used in SPARTA are portable, which means they produce the same
random number streams on any machine.

This command is required to perform a SPARTA simulation.

Restrictions: none

Related commands: none

Default: none

408

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

shell command

Syntax:

shell cmd args

cmd = cd or mkdir or mv or rm or rmdir or putenv or arbitrary command

cd arg = dir
 dir = directory to change to

mkdir args = dir1 dir2 ...
 dir1,dir2 = one or more directories to create

mv args = old new
 old = old filename
 new = new filename

rm args = file1 file2 ...
 file1,file2 = one or more filenames to delete

rmdir args = dir1 dir2 ...
 dir1,dir2 = one or more directories to delete

putenv args = var1=value1 var2=value2
 var=value = one of more definitions of environment variables
 anything else is passed as a command to the shell for direct execution

•

Examples:

shell cd sub1
shell cd ..
shell mkdir tmp1 tmp2 tmp3
shell rmdir tmp1
shell mv log.sparta hold/log.1
shell rm TMP/file1 TMP/file2
shell putenv SPARTA_DATA=../../data
shell my_setup file1 10 file2
shell my_post_process 100 dump.out

Description:

Execute a shell command. A few simple file-based shell commands are supported directly, in Unix-style syntax.
Any command not listed above is passed as-is to the C-library system() call, which invokes the command in a
shell.

This is means to invoke other commands from your input script. For example, you can move files around in
preparation for the next section of the input script. Or you can run a program that pre-processes data for input into
SPARTA. Or you can run a program that post-processes SPARTA output data.

With the exception of cd, all commands, including ones invoked via a system() call, are executed by only a single
processor, so that files/directories are not being manipulated by multiple processors.

The cd cmd executes the Unix "cd" command to change the working directory. All subsequent SPARTA
commands that read/write files will use the new directory. All processors execute this command.

The mkdir cmd executes the Unix "mkdir" command to create one or more directories.

The mv cmd executes the Unix "mv" command to rename a file and/or move it to a new directory.

409

https://sparta.github.io

The rm cmd executes the Unix "rm" command to remove one or more files.

The rmdir cmd executes the Unix "rmdir" command to remove one or more directories. A directory must be
empty to be successfully removed.

The putenv cmd defines or updates an environment variable directly. Since this command does not pass through
the shell, no shell variable expansion or globbing is performed, only the usual substitution for SPARTA variables
defined with the variable command is performed. The resulting string is then used literally.

Any other cmd is passed as-is to the shell along with its arguments as one string, invoked by the C-library
system() call. For example, these lines in your input script:

variable n equal 10
variable foo string file2
shell my_setup file1 $n ${foo}

would be the same as invoking

% my_setup file1 10 file2

from a command-line prompt. The executable program "my_setup" is run with 3 arguments: file1 10 file2.

Restrictions:

SPARTA does not detect errors or print warnings when any of these commands execute. E.g. if the specified
directory does not exist, executing the cd command will silently do nothing.

Related commands: none

Default: none

410

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

species command

Syntax:

species file ID1 ID2 ... keyword value ...

file = filename with species info•
ID1, ID2, ... = one or more species names listed in file•
multi-species abbreviations can also be used (see below)•
zero or more keyword/value pairs may be appended•
keyword = vibfile

vibfile value = vfile = filename for extra vibrational info

•

Examples:

species air.species air
species ar.species Ar
species air.species air CO2 CO vibfile co2.species.vib
species myfile H+ Cl- HCl

Description:

Define one or more particle species to use in the simulation. This command can be used as many times as desired
to add species to the list of species that the simulation recognizes.

The specified file is the name of a file containing definitions for a list of species, not all of which need to specified
in this command, or used in a simulation. Only those requested by ID will be extracted from the file and they must
be present in the file. The format of the species file is discussed below. The data directory in the SPARTA
distribution contains several species files, all with the suffix ".species".

Each ID is a character string used to identify the species, such as N or O2 or NO or D or Fe-. The string can be
any combination of alphanumeric characters or "+", "-", or underscore.

Instead of specifying IDs for single species, one of several pre-defined multi-species names can be used, each of
which is expanded into a list of several individual species IDs. The list of currently recognized abbreviations is as
follows:

air = N, O, NO•

These abbreviations can be used in combination with single-species IDs as in the 3rd example above.

The format of a species file is as follows. Comments or blank lines are allowed in the file. Comment lines start
with a "#" character. All other lines must have the following format with values separated by whitespace:

species-ID prop1 prop2 ... prop9 prop10

The species-ID is a string that will be matched against the requested species-ID, as described above. The
properties are as follows:

prop1 = molecular weight (atomic mass units, e.g. 16 for oxygen)•

411

https://sparta.github.io

prop2 = molecular mass (mass units)•
prop3 = rotational degrees of freedom (integer, unitless)•
prop4 = inverse rotational relaxtion number (unitless)•
prop5 = vibrational degrees of freedom (integer, unitless)•
prop6 = inverse vibrational relaxation number (unitless)•
prop7 = vibrational temperature (temperature units)•
prop8 = species weight (unitless)•
prop9 = multiple of electon charge (1 for a proton)•

The allowed values for rotational degrees of freedom (rotdof = prop3) are 0,2,3. Typically, 0 = monatomic
species, 2 = diatomic, 3 = anything else.

The allowed values for vibrational degrees of freedom (vibdof = prop5) are 0,2,4,6,8. The associated number of
vibrational modes is vibdof divided by 2. Typically, 0 modes = monatomic species, 1 mode = diatomic, 2/3/4
modes = triatomic or larger molecules.

Note that all the listed rotational and vibrational values must be specified for each species, but in cases where they
are not used by SPARTA, they can simply be specified as 0.0. Whether or not the values are used for a species
depends on the value of rotdof and vibdof. Whether the values are used in a simulation also depends on the
settings specified for the rotation and vibration keywords of the collide_modify command.

Specifically, if prop3 for rotdof = 0, then prop4 is ignored. If prop5 for vibdof = 0, then prop6 and prop7 are
ignored.

If vibdof = 4,6,8, then information for 2,3,4 vibrational modes can be specified for the species in a separate file
using the optional vibfile keyword, as discussed below. If the collide_modify vibration command is used with a
setting of discrete, then this vibrational mode info must be specified for each species with a vibdof = 4,6,8. Note
that the fix vibmode command must also be used to allocate per-particle storage for these additional modes.

NOTE: By default the maximum allowed number of vibrational modes is 4 (dof = 8). If you have a model with
species which need more, you can change the settings at the top of src/particle.h in the enum command for
MAXVIBMODE=4 to a larger value and re-compile the code. The format of the vibfile, as described next, is then
enhanced accordingly.

The optional vibfile keyword can be used to specify additional vibrational information in the specified vfile. If this
option is used, then an entry must appear in vfile for every species in this command with a vibdof value = 4,6,8.
Note that even if this vibrational info is read, it is ignored by SPARTA unless the collide_modify vibrate setting is
specified as discrete.

The format of a species vibrational file is as follows. See data/co2.species.vib for an example. Comments or blank
lines are allowed in the file. Comment lines start with a "#" character. All other lines must have the following
format with values separated by whitespace:

species-ID N temp1 relax1 degen1 temp2 relax2 degen2 ... tempN relaxN degenN

The species-ID is a string that will be matched against the requested species-ID, as described above. N is the
number of vibrational modes that follow, which must be either 2,3,4, and must match the corresponding vibdof
value = 4,6,8 (divided by two) used in the species file.

For each of the N modes, 3 values are listed:

tempI = vibrational temperature of mode I (temperature units)•

412

relaxI = inverse vibrational relaxation number of mode I (unitless)•
degenI = degeneracy of mode I (integer, unitless)•

These quantities are used during collisions if vibrational energy is modeled in discrete levels.

Note that the values for temp1 and relax1 override the same values defined in the species file (prop7 and prop6)
when they are listed for the same species in the vibfile.

Restrictions: none

Related commands: none

Default: none

413

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

species_modify command

Syntax:

species_modify ID property value ...

ID, property, value can be repeated one or more times•
ID = species ID•
property = mu

 mu = magnetic moment

•

value = value of property for that species

 value for mu (magnetic moment units)

•

Examples:

species_modify Fe mu 2.0 Cr mu 3.0

Description:

Set additional properties of one or more species used in a simulation. This can be used as many times as desired
for different species and properties. Currently it only supports setting of a single optional property (the magnetic
moment) which is not included in the species files read in by the species command.

Each ID is a character string used to identify a species, such as N or O2 or NO or D or Fe-. See the species
command for how species are added to a simulation model by reading their properties from a species file.

The only property currently recognized is mu or the scalar magnetic moment of each particle of the species. The
value for the mu property should be specified in the units described on the units doc page.

Restrictions: none

Related commands: none

Default:

No magnetic moments are defined for any species (all 0.0).

414

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

stats command

Syntax:

stats N

N = output statistics every N timesteps•

Examples:

stats 100

Description:

Compute and print statistical info (e.g. particle count, temperature) on timesteps that are a multiple of N and at the
beginning and end of a simulation run. A value of 0 will only print statistics at the beginning and end.

The content and format of what is printed is controlled by the stats_style and stats_modify commands.

The timesteps on which statistical output is written can also be controlled by a variable. See the stats_modify
every command.

Restrictions: none

Related commands:

stats_style, stats_modify

Default:

stats 0

415

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

stats_modify command

Syntax:

stats_modify keyword value ...

one or more keyword/value pairs may be listed•
keyword = flush or format or every

flush value = yes or no
format values = line string, int string, float string, M string, or none

 string = C-style format string
 M = integer from 1 to N, where N = # of quantities being output

every value = v_name
 v_name = an equal-style variable name

•

Examples:

stats_modify flush yes
stats_modify format 3 %15.8g
stas_modify format line "%ld %g %g %15.8g"

Description:

Set options for how statistical information is computed and printed by SPARTA.

The flush keyword invokes a flush operation after statistical info is written to the log file. This insures the output
in that file is current (no buffering by the OS), even if SPARTA halts before the simulation completes.

The format keyword can be used to change the default numeric format of any of quantities the stats_style
command outputs. All the specified format strings are C-style formats, e.g. as used by the C/C++ printf()
command. The line keyword takes a single argument which is the format string for the entire line of stats output,
with N fields, which you must enclose in quotes if it is more than one field. The int and float keywords take a
single format argument and are applied to all integer or floating-point quantities output. The setting for M string
also takes a single format argument which is used for the Mth value output in each line, e.g. the 5th column is
output in high precision for "format 5 %20.15g".

The format keyword can be used multiple times. The precedence is that for each value in a line of output, the M
format (if specified) is used, else the int or float setting (if specified) is used, else the line setting (if specified) for
that value is used, else the default setting is used. A setting of none clears all previous settings, reverting all values
to their default format.

NOTE: The stats output values step and atoms are stored internally as 8-byte signed integers, rather than the usual
4-byte signed integers. When specifying the format int option you can use a "%d"-style format identifier in the
format string and SPARTA will convert this to the corresponding 8-byte form when it is applied to those
keywords. However, when specifying the line option or format M string option for step and natoms, you should
specify a format string appropriate for an 8-byte signed integer, e.g. one with "%ld".

The every keyword allows a variable to be specified which will determine the timesteps on which statistical
output is generated. It must be an equal-style variable, and is specified as v_name, where name is the variable
name. The variable is evaluated at the beginning of a run to determine the next timestep at which a dump snapshot
will be written out. On that timestep, the variable will be evaluated again to determine the next timestep, etc. Thus

416

https://sparta.github.io

the variable should return timestep values. See the stagger() and logfreq() math functions for equal-style variables,
as examples of useful functions to use in this context. Other similar math functions could easily be added as
options for equal-style variables. In addition, statistical output will always occur on the first and last timestep of
each run.

For example, the following commands will output statistical info at timesteps
0,10,20,30,100,200,300,1000,2000,etc:

variable s equal logfreq(10,3,10)
stats_modify 1 every v_s

Note that the every keyword overrides the output frequency setting made by the stats command, by setting it to 0.
If the stats command is later used to set the output frequency to a non-zero value, then the variable setting of the
stats_modify every command will be overridden.

Restrictions: none

Related commands:

stats, stats_style

Default:

The option defaults are flush = no, format int = "%8d", format float = "%12.8g", and every = non-variable setting
provided by the stats command.

417

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

stats_style command

Syntax:

stats_style arg1 arg2 ...

arg1,arg2,... = list of keywords

 possible keywords = step, elapsed, elaplong, dt, time, cpu, tpcpu, spcpu,
 wall, np, npave, ntouch, ntouchave, ncomm, ncommave,
 nbound, nboundave, nexit, nexitave,
 nscoll, nscollave, nscheck, nscheckave,
 ncoll, ncollave, nattempt, nattemptave,
 nreact, nreactave, nsreact, nsreactave,
 ngrid, nsplit, maxlevel,
 vol, lx, ly, lz,
 xlo, xhi, ylo, yhi, zlo, zhi,
 c_ID, c_ID[I], c_ID[I][J],
 f_ID, f_ID[I], f_ID[I][J],
 sc_ID[I], sr_ID[I],
 v_name

 step = timestep
 elapsed = timesteps since start of this run
 elaplong = timesteps since start of initial run in a series of runs
 dt = timestep size
 time = simulation time
 cpu = elapsed CPU time in seconds within a run
 tpcpu = time per CPU second
 spcpu = timesteps per CPU second
 wall = wallclock time in seconds
 np,npave = # of particles (this step, per-step)
 ntouch,ntouchave = # of cell touches by particles (this step, per-step)
 ncomm,ncommave = # of particles communicated (this step, per-step)
 nbound,nboundave = # of boundary collisions (this step, per-step)
 nexit,nexitave = # of boundary exits (this step, per-step)
 nscoll,nscollave = # of surface collisions (this step, per-step)
 nscheck,nscheckave = # of surface checks (this step, per-step)
 ncoll,ncollave = # of particle/particle collisions (this step, per-step)
 nattempt,nattemptave = # of attempted collisions (this step, per-step)
 nreact,nreactave = # of chemical reactions (this step, per-step)
 nsreact,nsreactave = # of chemical reactions on surfs and boundaries (this step, per-step)
 ngrid = # of grid cells (including split cells)
 nsplit = # of split cells
 maxlevel = # of refinement levels in current grid
 vol = volume of simulation box
 lx,ly,lz = simulation box lengths
 xlo,xhi,ylo,yhi,zlo,zhi = box boundaries
 c_ID = global scalar value calculated by a compute with ID
 c_ID[I] = Ith component of global vector calculated by a compute with ID, I can include wildcard (see below)
 c_ID[I][J] = I,J component of global array calculated by a compute with ID
 f_ID = global scalar value calculated by a fix with ID
 f_ID[I] = Ith component of global vector calculated by a fix with ID, I can include wildcard (see below)
 f_ID[I][J] = I,J component of global array calculated by a fix with ID
 sc_ID[I] = Ith component of global vector calculated by a surface collision model with ID
 sr_ID[I] = Ith component of global vector calculated by a surface reaction model with ID
 v_name = scalar value calculated by an equal-style variable with name

•

Examples:

418

https://sparta.github.io

stats_style step cpu np
stats_style step cpu spcpu np xlo xhi c_myCount[2]
stats_style step cpu spcpu np xlo xhi c_myCount[*]

Description:

Determine what statistical data is printed to the screen and log file.

The values printed by the various keywords are instantaneous values, calculated on the current timestep. The
exception is the keywords suffixed by "ave", which print a running total divided by the number of timesteps.

Options invoked by the stats_modify command can be used to set the numeric precision of each printed value, as
well as other attributes of the statistics.

The step and elapsed keywords refer to timestep count. Step is the current timestep. Elapsed is the number of
timesteps elapsed since the beginning of this run. Elaplong is the number of timesteps elapsed since the beginning
of an initial run in a series of runs. See the start and stop keywords for the run command for info on how to
invoke a series of runs that keep track of an initial starting time. If these keywords are not used, then elapsed and
elaplong are the same value.

The cpu keyword is elapsed CPU seconds since the beginning of this run. The tpcpu and spcpu keywords are
measures of how fast your simulation is currently running. The tpcpu keyword is simulation time per CPU
second, where simulation time is in time units. The spcpu keyword is the number of timesteps per CPU second.
Both quantities are on-the-fly metrics, measured relative to the last time they were invoked. Thus if you are
printing out statistical output every 100 timesteps, the two keywords will continually output the time and timestep
rate for the last 100 steps.

The wall keyword is elapsed time in seconds since SPARTA was launched. This can be used to time portions of
the input script in the following manner:

variable t equal wall
variable t1 equal $t
portion of input script
variable t2 equal $t
variable delta equal v_2-v_1
print "Delta time = $delta"

The np, ntouch, ncomm, nbound, nexit, nscoll, nscheck, ncoll, nattempt, nreact, and nsreact keywords all generate
counts for the current timestep.

The npave, ntouchave, ncommave, nboundave, nexitave, nscollave, nscheckave, ncollave, nattemptave, nreactave,
and nsreactave keywords all generate values that are the cummulative total of the corresponding count divided by
elapsed = the number of timesteps since the start of the current run.

The np keyword is the number of particles.

The ntouch keyword is the number of cells touched by the particles during the move portion of the timestep. E.g.
if a particle moves from cell A to adjacent cell B, it touches 2 cells.

The ncomm keyword is the number of particles communicated to other processors.

The nbound keyword is the number of particles that collided with a global boundary. Crossing a periodic
boundary or exiting an outflow boundary is not counted.

419

The nexit keyword is the number of particles that exited the simulation box through an outflow boundary.

The nscoll keyword is the number of particle/surface collisions that occurred, where a particle collided with a
geometric surface.

The nscheck keyword is the number of particle/surface collisions that were checked for. If a cell is overlapped by
N surface elements, all N must be checked for collisions each time a particle in that cell moves.

The ncoll keyword is the number of particle/particle collisions that occurred.

The nattempt keyword is the number of particle/particle collisions that were attempted.

The nreact keyword is the number of chemical reactions that occurred. The nsreact keyword is the number of
chemical reactions on surfaces that occurred, including the global boundaries if they are treated as reacting
surfaces, via the bound_modify command.

The ngrid keyword is the number of grid cells which includes both unsplit and split cells. The nsplit keyword is
the number of split cells. See Section howto 4.8 for a description of the hierarchical grid used by SPARTA and a
definition of these kinds of grid cells.

The maxlevel keyword is the # of levels of grid refinement currently used in the simulation. This may change due
to dynamic grid adaptation.

The vol keyword is the volume (or area in 2d) of the simulation box.

The lx, ly, lz keywords are the dimensions of the simulation box.

The xlo, xhi, ylo, yhi, zlo, zhi keywords are the boundaries of the simulation box.

For output values from a compute or fix, the bracketed index I used to index a vector, as in c_ID[I] or f_ID[I],
can be specified using a wildcard asterisk with the index to effectively specify multiple values. This takes the
form "*" or "*n" or "n*" or "m*n". If N = the size of the vector (for mode = scalar) or the number of columns in
the array (for mode = vector), then an asterisk with no numeric values means all indices from 1 to N. A leading
asterisk means all indices from 1 to n (inclusive). A trailing asterisk means all indices from n to N (inclusive). A
middle asterisk means all indices from m to n (inclusive).

Using a wildcard is the same as if the individual elements of the vector had been listed one by one. E.g. these 2
stats_style commands are equivalent, since the compute reduce command creates a global vector with 6 values.

compute myCount reduce max x y z vx vy vz
stats_style step np c_myCount[*]
stats_style step np c_myCount[1] c_myCount[2] c_myCount[3] &
 c_myCount[4] c_myCount[5] c_myCount[6]

For the following keywords, the ID in the keyword should be replaced by the actual ID of a surface collision
model, surface reaction model, compute, fix, or variable name that has been defined elsewhere in the input script.
See those commands for details. If the entity calculates a global scalar, vector, or array, then the keyword formats
with 0, 1, or 2 brackets will reference a scalar value from the entity.

The c_ID and c_ID[I] and c_ID[I][J] keywords allow global values calculated by a compute to be output. As
discussed on the compute doc page, computes can calculate global, per-particle, per-grid, or per-surf values. Only
global values can be referenced by this command. However, per-particle, per-grid, or per-surf compute values can
be referenced in a variable and the variable referenced, as discussed below. See the discussion above for how the I

420

in c_ID[I] can be specified with a wildcard asterisk to effectively specify multiple values from a global compute
vector.

The f_ID and f_ID[I] and f_ID[I][J] keywords allow global values calculated by a fix to be output. As discussed
on the fix doc page, fixes can calculate global, per-particle, per-grid, or per-surf values. Only global values can be
referenced by this command. However, per-particle or per-grid or per-surf fix values can be referenced in a
variable and the variable referenced, as discussed below. See the discussion above for how the I in f_ID[I] can be
specified with a wildcard asterisk to effectively specify multiple values from a global fix vector.

The sc_ID[I] and sr_ID[I] keywords allow global values calculated by a surface collision model or surface
reaction model to be output. As discussed on the surf_collide and surf_react doc pages, these models both
calculate a global vector of quantities.

The v_name keyword allow the current value of a variable to be output. The name in the keyword should be
replaced by the variable name that has been defined elsewhere in the input script. Only equal-style variables can
be referenced. See the variable command for details. Variables of style equal can reference per-particle or per-grid
or per-surf properties or stats keywords, or they can invoke other computes, fixes, or variables when evaluated, so
this is a very general means of creating statistical output.

See Section_modify for information on how to add new compute and fix styles to SPARTA to calculate quantities
that can then be referenced with these keywords to generate statistical output.

Restrictions: none

Related commands:

stats, stats_modify

Default:

stats_style step cpu np

421

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

suffix command

Syntax:

suffix style args

style = off or on or kk•

Examples:

suffix off
suffix on
suffix kk

Description:

This command allows you to use variants of various styles if they exist. In that respect it operates the same as the
-suffix command-line switch. It also has options to turn off or back on any suffix setting made via the command
line.

The specified style kk refers to the optional KOKKOS package that SPARTA can be built with, as described in
this section of the manual. The KOKKOS package is a collection of styles optimized to run using the Kokkos
library on various kinds of hardware, including GPUs via CUDA and many-core chips via OpenMP
multi-threading.

As an example, the KOKKOS package provides a compute_style temp variant, with style name temp/kk. A
variant style can be specified explicitly in your input script, e.g. compute temp/kk. If the suffix command is used
with the appropriate style, you do not need to modify your input script. The specified suffix (kk) is automatically
appended whenever your input script command creates a new fix, compute, etc. If the variant version does not
exist, the standard version is created.

If the specified style is off, then any previously specified suffix is temporarily disabled, whether it was specified
by a command-line switch or a previous suffix command. If the specified style is on, a disabled suffix is turned
back on. The use of these 2 commands lets your input script use a standard SPARTA style (i.e. a non-accelerated
variant), which can be useful for testing or benchmarking purposes. Of course this is also possible by not using
any suffix commands, and explicitly appending or not appending the suffix to the relevant commands in your
input script.

Restrictions: none

Related commands:

Command-line switch -suffix

Default: none

422

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

surf_collide command

Syntax:

surf_collide ID style args keyword values ...

ID = user-assigned name for the surface collision model•
style = specular or diffuse or cll or adiabatic or impulsive or td or piston or transparent or vanish or
specular/kk or diffuse/kk or piston/kk or vanish/kk

•

args = arguments for specific style

specular or specular/kk args = noslip (optional)
 noslip = reflect all velocity components off surface (not just normal component)

diffuse or diffuse/kk args = Tsurf acc
 Tsurf = temperature of surface (temperature units)
 Tsurf can be a variable or custom per-surf attribute (see below)
 acc = accommodation coefficient

cll args = Tsurf acc_n acc_t acc_rot acc_vib
 Tsurf = temperature of surface (temperature units)
 Tsurf can be a variable or custom per-surf attribute (see below)
 acc_n = accommodation coefficient in the surface normal direction
 acc_t = accommodation coefficient in the surface tangential direction
 acc_rot = accommodation coefficient for the rotational modes
 acc_vib = accommodation coefficient for the vibrational modes

adiabatic args = none
impulsive args = Tsurf model param1 param2 var theta_peak pol_pow azi_pow

 Tsurf = temperature of surface (temperature units)
 Tsurf can be a variable or custom per-surf attribute (see below)
 model can be softsphere or tempvar

softsphere args = en_ratio eff_mass
 param1 = en_ratio = fraction of energy lost in the collision
 param2 = eff_mass = effective mass of the surface atom

tempvar args = a1 a0
 param1 = a1 = linear term in the variation with temperature
 param2 = a0 = constant term in the variation with temperature
 var = variance of the scattered particle velocity distribution
 theta_peak = peak location of the polar angle distribution
 pol_pow = cosine power represeting the polar angular distribution
 azi_pow = cosine power represeting the azimuthal angular distribution

td arg = Tsurf
 Tsurf = temperature of surface (temperature units)
 Tsurf can be a variable or custom per-surf attribute (see below)

piston or piston/kk args = Vwall
 Vwall = velocity of boundary wall (velocity units)

transparent args = none

vanish or vanish/kk args = none

•

zero or more keyword/arg pairs may be appended•
keyword = translate or rotate or temp/freq or partial or barrier or bond or init_energy or step or double
or intenergy

•

values = values for specific keyword

translate args = Vx Vy Vz
 Vx,Vy,Vz = translational velocity of surface (velocity units)

rotate args = Pz Py Pz Wx Wy Wz
 Px,Py,Pz = point to rotate surface around (distance units)
 Wx,Wy,Wz = angular velocity of surface around point (radians/time)

temp/freq arg = Nfreq

•

423

https://sparta.github.io

 Nfreq = evaulate a temperature variable every this many timesteps (default = 1)
partial args = eccen (only for cll style)

 eccen = eccentricity parameter
barrier args = bar_val (only for td style)

bar_val = value of the desorption barrier in temperature units
bond args = bond_trans bond_rot bond_vib (only for td style)

bond_trans = amount of bond dissociation energy (in temperature units) going into translational mode
bond_rot = amount of bond dissociation energy (in temperature units) going into rotational mode
bond_vib = amount of bond dissociation energy (in temperature units) going into vibrational mode

init_energy = IE_trans IE_rot IE_vib (only for td style)
IE_trans = fraction of initial translational energy going into translational mode
IE_rot = fraction of initial translational energy going into rotational mode
IE_vib = fraction of initial translational energy going into vibrational mode

step args = epsilon (only for impulsive style)
 epsilon = ratio of the height to the width of the step

double args = polar_pow_2 (only for impulsive style)
 polar_pow_2 = cosine power for the polar angular distribution between peak and surface

intenergy args = frac_rot frac_vib (only for impulsive style)
 frac_rot = fraction of lost translational energy going into the rotational mode
 frac_vib = fraction of lost translational energy going into the vibrational mode

Examples:

surf_collide 1 specular
surf_collide 1 transparent
surf_collide 1 diffuse 273.15 0.9
surf_collide 1 cll 273.15 0.8 0.8 0.5 0.1
surf_collide 1 cll 273.15 1.0 1.0 0.1 0.1 partial 0.5
surf_collide 1 adiabatic
surf_collide 1 impulsive 1000.0 softsphere 0.2 50 2000 60 5 75
surf_collide 1 impulsive 1000.0 tempvar 3 500 2000 60 5 75
surf_collide 1 impulsive 1000.0 softsphere 0.2 50 2000 60 5 75 double 10
surf_collide 1 impulsive 1000.0 tempvar 3 500 2000 60 5 75 step 0.1
surf_collide heatwall diffuse v_ramp 0.8 temp/freq 100
surf_collide heatwall diffuse v_ramp 0.8 translate 5.0 0.0 0.0

Description:

Define a model for particle-surface collisions. One or more models can be defined and assigned to different
surfaces or simulation box boundaries via the surf_modify or bound_modify commands. See >Section 4.9 for
more details of how SPARTA defines surfaces as collections of geometric elements, triangles in 3d and line
segments in 2d. Chemical reactions can also be part of a particle-surface interaction model. See the surf_react
command for details. All of the collision styles listed here support optional reactions, except the vanish style.

The ID for a surface collision model is used to identify it in other commands. Each surface collision model ID
must be unique. The ID can only contain alphanumeric characters and underscores.

Several of the surface collision models specify Tsurf as an argument for the temperature of the surface. It can be
specified in three different ways.

First, Tsurf can be a numeric value. The temperature of all surface elements assigned to the model will be the
same and will be constant for the duration of the simulation.

Second, Tsurf can be a variable specified as v_name where name is the name of the variable defined by the
variable command. Two different styles of variable can be used.

The first is an equal-style variable which evaulates to a single scalar value, which will be the temperature assigned
to every surface element. Equal-style variables can specify formulas with various mathematical functions, and

424

include stats_style command keywords and timestep and elapsed time. Thus it is easy to specify a time-dependent
temperature.

The second is a surf-style variable with a formula which can calculate a different temperature for each surface
element, e.g. a temperature which depends on the geometric location of the center point of the surface element.
The calculation can also be time-dependent if desired. A surf-style variable can also access a compute or fix
which outputs per-surf quantities. For example the compute surf and fix ave/surf commands can tally or average
energy transfer from particles to surface elements, which could be used to infer a temperature for each surface
element.

Note that the frequency at which the equal-style or surf-style variable is evaluated can be set using the optional
temp/freq keyword, disussed below. The default value is 1, meaning the variable is evaluated every timestep.
Surf-style variables can be expensive to evaluate, because they require inter-processor communication in parallel,
so you may wish to set the temp/freq keyword to a larger value.

Third, Tsurf can be a custom per-surf attribute specified as s_name with the name of the attribute. It must be a
custom per-surf vector with floating point values for the temperature for each surface element. These could be
static values initialized, for example, by the read_surf command. Or they could be dynamic values recomputed
periodically, for example, by the "fix surf/temp" command. See Section 6.17 for more discussion of custom
attributes.

Note that if the custom per-surf vector values are dynamic, then each time they are modified (e.g. by the fix
surf/temp command), then their use by a surf_collide model will trigger inter-processor communication to ensure
each processor knows the correct temperature values for the surface elements its particles interact with. This can
be an expensive operation, so it may be desirable to not update the custom per-surf vector values too frequently.

The specular style computes a simple specular reflection model. It requires no arguments. Specular reflection
means that a particle reflects off a surface element with its incident velocity vector reversed with respect to the
outward normal of the surface element. The particle's speed is unchanged.

Specular reflection means that a particle bounce off a surface element reverses only the component of its velocity
normal to the surface. If the optional noslip keyword is used, the particle bounce flips the sign of all 3 xyz
components of the particle's incident velocity, so that it now moves in the opposite direction, creating a no slip
boundary condition. In either case, the particle's speed is unchanged.

The diffuse style computes a simple diffusive reflection model.

The model has 2 parameters set by the Tsurf and acc arguments.

The Tsurf argument specifies the temperature of the surface. It can be a numeric value, surf-style variable, or
custom per-surf attribute. See the explanation for all 3 options above.

Acc is an accommodation coefficient from 0.0 to 1.0, which determines what fraction of surface collisions are
diffusive. The rest are specular. Thus a setting of acc = 0.0 means all collisions are specular.

Note that setting acc = 0.0, is a way to perform surface reactions with specular reflection, via the surf_react
command, which cannot be done in conjunction with the surf_collide specular command. See the surf_react doc
page for details.

Diffuse reflection emits the particle from the surface with no dependence on its incident velocity. A new velocity
is assigned to the particle, sampled from a Gaussian distribution consistent with the surface temperature. The new
velocity will have thermal components in the direction of the outward surface normal and the plane tangent to the

425

surface given by:

The cll style computes the surface collision model proposed by Cercignani, Lampis and Lord. The model has 5
parameters set by the Tsurf, acc_n, acc_t, acc_rot, and acc_vib arguments.

The Tsurf argument specifies the temperature of the surface. It can be a numeric value, surf-style variable, or
custom per-surf attribute. See the explanation for all 3 options above.

Acc_n, acc_t, acc_rot, and acc_vib are the accommodation coefficient for the surface normal direction, surface
tangential directions, rotational energy mode, and vibrational energy mode respectively. The rotational and
vibrational energy accommodation values must be specified even for an atomic species; however these values are
simply ignored.

The theoretical scattering kernel was proposed by Cercignani and Lampis (Cercignani71). In this original model,
two accommodation coefficients for the normal and tangential directions are employed. Each of these quantities
can take a value between 0 and 1. Specular reflection is achieved by using the values (0,0), while complete
thermal accommodation with the surface and cosine angular distributions is obtained using (1,1). There is smooth
variation of both the energy and angular distribution for values in between these limits leading to lobular
distributions similar to those observed in experiments. The implementation details of this model within DSMC
was given by Lord (Lord90), along with extension to rotational and vibrational modes with both continuous and
discrete levels (Lord91).

The adiabatic style computes the adiabatic surface collision model proposed by Mohammadzadeh, Rana, and
Struchtrup (Mohammadzadeh16). This style requires no arguments. The adiabatic surface is modelled by
scattering particles isotropically whilst conserving their velocity magnitude. Therefore, no energy is transferred
between the wall and the particles. Note, that this is only valid for particle collisions not for potential surface
reactions.

The td style computes the thermal desorption surface collision model proposed by Swaminathan Gopalan et al.
(SG18), which is similar to diffuse style with an accommodation coefficient acc = 1.0.

The Tsurf argument specifies the temperature of the surface. It can be a numeric value, surf-style variable, or
custom per-surf attribute. See the explanation for all 3 options above.

The particles are scattered thermally based on the Maxwell Boltzmann distribution conisstent with the surface
temperture. The new velocity will have thermal components in the direction of the outward surface normal and
the plane tangent to the surface given by:

The impuslive style computes the surface collision model proposed by Swaminathan Gopalan et al. (SG18). The
model has 8 parameters. Within impulsive scattering, two different models are available, namely softsphere and
tempvar. The softsphere argument uses the soft sphere model and has two parameters: en_ratio which represents
the fraction of energy lost during the collision, and eff_mass specifying the effective mass of the surface atom.
The tempvar argument directly provides the peak value of the scattered particle velocity distribution as a linear

426

function of temperature. It has two parameters: the linear term a1 and constant term a0. The other five parameters
Tsurf, var, pol_peak, pol_pow, azi_pow are set for both the models.

The Tsurf argument specifies the temperature of the surface. It can be a numeric value, surf-style variable, or
custom per-surf attribute. See the explanation for all 3 options above.

Var is the variance of the scattered particle velocity distribution; pol_peak is the peak of the polar angle
distribution; pol_pow and azi_pow are the cosine power representing the polar and azimuthal angle distribution
respectively.

The impulsive model is used to represent the scattering of particles having super or hyperthermal translational
energies and very low internal energies, like in a beam. This type of scattering falls under the structural regime,
whose scattering physics and distributions are very different from the thermal regime. The velocity distribution of
the impulsive scattering model can be represented using a Gaussian distribution with a mean u0 and a variance
\alpha following Rettner (Rettner94a)

The variance parameter is directly specified by the user. The value of u0 can be provided directly using the
tempvar model in which it is represented as a linear function of temperature. The linear term a1 and constant term
a0 are given as inputs.

The u0 parameter can also be specified by a more physical model such as the soft sphere scattering model
(Alexander12). This model uses the parameters en_ratio, the fraction of energy lost in the collision and eff_mass,
the effective mass of the surface atom to determine the average final energy and then the average final velocity
u0. Within the soft sphere model, the average final velocity will vary as a function of the final polar angle.

Both the polar and azimuthal angular distribution are lobular in nature and sharply peaked. These distributions can
be represented using the cosine power law distribution Glatzer97. The peak of the azimuthal distribution remains
at zero, while the peak of the polar angle distribution is usually higher than the incident angle (away from the
normal). Hence the peak location (\theta_peak) and cosine power (n) of the polar angle distribution and the cosine
power (m) of the azimuthal angular distribution are taken as input parameters. A factor of 2 is present in the
azimuthal distribution to ensure the function remians positive within the range of the azimuthal angle: (-180, 180)

427

The internal (rotational and vibrational) energy of an incident molecule remains unchanged within the impulsive
model unless the optional keyword intenergy is specified (see below).

The piston style models a subsonic pressure boundary condition. It can only be assigned to the simulation box
boundaries via the bound_modify command or to surface elements which are parallel to one of the box boundaries
(via the surf_modify command).

It treats collisions of particles with the surface as if the surface were moving with specified velocity Vwall away
from the incident particle. Thus the "collision" actually occurs later in the timestep and the reflected velocity is
less than it would be for reflection from a stationary surface. This calculation is performed using equations 12.30
and 12.31 in (Bird94)) to compute the reflected velocity and final position of the particle. If the particle does not
return within the timestep to a position inside the simulation box (for a boundary surface) or to the same side of
the initial surface that it started from (for a surface element collision), the particle is deleted. This effectively
induces particles at the boundary to have a velocity distribution consistent with a subsonic pressure boundary
condition, as explained in (Bird94)).

Vwall should be chosen to correspond to a desired pressure condition for the density of particles in the system.

NOTE: give more details on how to do this?

Note that Vwall must always be input as a value >= 0.0, meaning the surface is moving away from the incident
particle. For example, in the z-dimension, if the upper box face is assigned Vwall, it is moving upward. Similarly
if the lower box face is assigned Vwall, it is moving downward.

The transparent style simply allows particles to pass through the surface without altering the particle properties.

This is useful for tallying flow statistics. The surface elements must have been flagged as transparent when they
were read in, via the read_surf command and its transparent keyword. The compute surf command will tally
fluxes differently for transparent surf elements. The Section 6.15 doc page provides an overview of transparent
surfaces. See those doc pages for details.

The vanish style simply deletes any particle which hits the surface.

This is useful if a surface is defined to be an inflow boundary on the simulation domain, e.g. using the fix
emit/surf command. Using this surface collision model will also treat the surface as an outflow boundary. This is
similar to using the fix emit/face command on a simulation box face while also setting the face to be an outflow
boundary via the boundary o command.

Note that the surf_react global command can also be used to delete particles hitting a surface, by setting the
pdelete parameter to 1.0. Using a surf_collide vanish command is simpler.

The keyword translate can only be applied to the diffuse and cll style. It models the surface as if it were
translating with a constant velocity, specified by the vector (Vx,Vy,Vz). This velocity is added to the final
post-collisional velocity of each particle that collides with the surface.

The keyword rotate can only be applied to the diffuse and cll style. It models the surface as if it were rotating with
a constant angular velocity, specified by the vector W = (Wx,Wy,Wz), around the specified point P = (Px,Py,Pz).
Note that W and P define the rotation axis. The magnitude of W defines the speed of rotation. I.e. if the length of
W = 2*pi then the surface is rotating at one revolution per time unit, where time units are defined by the units
command.

428

When a particle collides with the surface at a point X = (x,y,z), the collision point has a velocity given by V =
(Vx,Vy,Vz) = W cross (X-P). This velocity is added to the final post-collisional velocity of the particle.

The rotate keyword can be used to treat a simulation box boundary as a rotating wall, e.g. the end cap of an
axisymmetric cylinder. Or to model a rotating object consisting of surface elements, e.g. a sphere. In either case,
the wall or surface elements themselves do not change position due to rotation. They are simply modeled as
having a tangential velocity, as if the entire object were rotating.

IMPORTANT NOTE: For both the translate and rotate keywords the added velocity can only be tangential to the
surface, with no normal component since the surface is not actually moving in the normal direction. SPARTA
does not check that the specified translation or rotation produces a tangential velocity. However if does enforce
the condition by subtracting off any component of the added velocity that is normal to the simulation box
boundary or individual surface element.

The temp/freq keyword only applies to the styles which define a Tsurf parameter for the temperature of the
surface, and also only applies if Tsurf is specified as a variable with the syntax v_name. The Nfreq value
determines the frequency at which the variable is evaluated, once every Nfreq timesteps. The default value is 1
(evaluate every timestep). This is usually fine for equal-style variables, but surf-style variables may be expensive
to evaluate. In which case setting Nfreq to 100 or 1000 may be desirable.

The keyword partial can only be applied to the cll style. Within the CLL model, the energy and angular
distribution are linked. Lord (Lord95) proposed a way to decouple the energy accommodation from the angular
distribution. This case of partially diffuse scattering with incomplete energy accommodation can be activated in
SPARTA using the optional keyword partial. It requires an additional parameter eccentricity set by the eccen
argument. For this case, the energy accommodation is calculated using the accommodation coefficients, but the
angular distribution is computed using the additional parameter eccentricity. The eccen parameter can vary
between 0 and 1. A value of 0 represents fully diffuse scattering and gives a cosine angular distribution.
Increasing value of eccen presents more peaked and lobular distribution (Lord95).

The keywords barrier, bond, and initenergy can only be applied to the td style. Due to the nature of the interaction
between the products and the surface, the desorption of the products might have an energy barrier. For a surface
desorption process, this desorption barrier exists only in the normal direction. Thus, only the products having
enough energy (in the normal direction) to overcome the barrier will be able to desorb from the surface. This
alters the velocity distribution of the observed products along the surface normal direction and thus leads to the
distortion of the speed distribution (Goodman72). The angular distributions, which represent the ratio of the
normal to the tangential velocities, are also altered as a result of the desorption barrier. The angular distributions
are peaked more towards the normal and are often described by a cosine power law distribution.

In addition to the desorption energy barrier, products formed through thermal mechanisms might have energies
exceeding those corresponding to the bulk surface temperature. The energy of the local surface environment
where the product formation occurs might be greater than the normal surface temperature due to the formation of
local hot-spots (Rettner94b).

429

These hot-spots might stem from the dissociation or bond energy of the intermediates or the products. The
optional keyword bond can be used to account for this scenario. This requires three arguments: the amount of
energy (in temperature units) going into the translational, rotational and vibrational mode.

The higher energy during desorption might also arise due to the energy deposited by high speed of the incoming
gas-phase particles. Since the formation of the products is rapid, the product might form and desorb before this
high energy dissipates from the local hot-spots (Beckerle90). In this case, although the products are in thermal
equilibrium with the surroundings, the energies of the products might not depend only on the equilibrium surface
temperature, but also on the incoming velocities of the particles. This can be used within SPARTA using the
optional keyword initenergy. It requires 3 arguments: fraction of the initial translational energy going into the
translational, rotational and vibrational modes.

The keywords step, double, and intenergy can only be applied to the impulsive style. In some cases, it is observed
that the polar angular distribution on either side of the peak is different. Goodman Goodman74 provided a
physical reasoning for the observed faster decay rate in the polar angular distribution away from the normal with
the surface assumed to consist of periodic steps of average height H and average periodicity L. The ratio of the
height to periodicity is epsilon and the correction to the angular distribution is given by

This optional argument can be accessed using the keyword step, and epsilon parameter must be specified. Another
optional argument to specify the angular distribution of the products is the double keyword. In this option, the
angular distribution on either sides of the peak are represented by a different cosine power decay. It requires one
argument pol_pow_2, which describes the distribution between the peak and the surface. The distribution between
the surface normal and the peak is described using the parameter pol_pow.

The keyword intenergy can be used to modify the internal energy of an incident molecule during collision. In the
case of hyperthermal collision the energy from the translational mode is transfered to the internal modes. This
keyword requires two input parameters frac_rot and frac_vib. These specify the fraction of the change in
translational energy (difference between the final and initial) transferred to the rotational and vibrational mode
respectively.

Output info:

All the surface collide models calculate a global vector of length 2. The values can be used by the stats_style
command and by variables that define formulas. The latter means they can be used by any command that uses a
variable as input, e.g. the fix ave/time command. See Section 4.4 for an overview of SPARTA output options.

The first element of the vector is the count of particles that hit surface elements assigned to this collision model
during the current timestep. The second element is the cummulative count of particles that have hit surface

430

elements since the current run began.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

The translate and rotate keywords cannot be used together.

If specified with a kk suffix, this command can be used no more than twice in the same input script (active at the
same time).

Related commands:

read_surf, bound_modify

Default:

The default for the temp/freq keyword = 1.

(Bird94) G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford
(1994).

(Cercignani71) Cercignani C, Lampis M, Kinetic models for gas-surface interactions, Transport theory and
statistical physics, Jan (1971).

(Lord90) R. G. Lord, presented at the 17th International Symposium on Rarefied Gas Dynamics, Germany, July
(1990).

(Lord91) R. G. Lord, Some extensions of the Cercignani-Lampis gas-surface interaction model, Physics of Fluids
A: Fluid Dynamics, Jan (1991).

(SG18) K. Swaminathan Gopalan, Development of a detailed surface chemistry framework in DSMC, AIAA
Aerospace Sciences Meeting, Jan (2018).

431

(Rettner94a) C. T. Rettner, Reaction of an H-atom beam with Cl/Au(111): Dynamics of concurrent EleyRideal
and Langmuir-Hinshelwood mechanisms, Journal of Chemical Physics, (1994).

(Alexander12) W. A. Alexander, et al, Kinematics and dynamics of atomic-beam scattering on liquid and
self-assembled monolayer surfaces, Faraday discussions, (2012)

(Glatzer97) D. Glatzer, et al, Rotationally excited NO molecules incident on a graphite surface: in- and
out-of-plane angular distributions, Surface Science, (1997)

(Lord95) R. G. Lord, Some further extensions of the Cercignani-Lampis gas-surface interaction model, Physics
of Fluids, May (1995).

(Goodman72) F. O. Goodman, Simple model for the velocity distribution of molecules desorbed from surfaces
following recombination of atoms, Surface Science, (1972).

(Rettner94b) C. T. Rettner and J. Lee, Dynamic displacement of o2 from pt (111): A new desorption mechanism,
The Journal of chemical physics, (1994).

(Beckerle90) J. Beckerle, A. Johnson, and S. Ceyer, Collision-induced desorption of physisorbed CH4 from Ni
(111): Experiments and simulations, The Journal of Chemical Physics, (1990).

(Goodman74) F. O. Goodman, Determination of characteristic surface vibration temperatures by molecular beam
scattering: Application to specular scattering in the H-LiF (001) system, Surface Science, (1974).

(Mohammadzadeh16) A. Mohammadzadeh, A. Rana, and H. Struchtrup, DSMC and R13 modeling of the
adiabatic surface, International Journal of Thermal Sciences, vol. 101, pp. 9â��23, March (2016).

432

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

surf_modify command

Syntax:

surf_modify group-ID keyword args ...

group-ID = ID of the surface group to operate on

one or more keyword/arg pairs may be listed•
keyword = collide or (react)

collide arg = sc-ID
 sc-ID = ID of a surface collision model

react arg = sr-ID
 sr-ID = ID of a surface reaction model or none

•

Examples:

surf_modify sphere collide 1
surf_modify all collide sphere react sphere

Description:

Set parameters for a group of surface elements in the specified group-ID. Surface elements are read in by the
read_surf command. They can be assigned to groups by that command or via the group command.

The collide keyword is used to assign a surface collision model. Surface collision models are defined by the
surf_collide command, which assigns each a surface collision ID, specified here as sc-ID.

The effect of this keyword is that particle collisions with surface elements in group-ID will be computed by the
surface collision model with sc-ID.

The react keyword is used to assign a surface reaction model. Surface reaction models are defined by the
surf_react command, which assigns each a surface reaction ID, specified here as sr-ID or the word "none". The
latter means no reaction model.

The effect of this keyword is that particle collisions with surface elements in group-ID will induce reactions
which are computed by the surface reaction model with sr-ID. If "none" is used, no surface reactions occur.

Note that if the same surface element is assigned to multiple groups, using this command multiple times may
override the effect of a previous command that assigned a different collision or reaction model to a particular
surface element.

Restrictions:

All surface elements must be assigned to a surface collision model via the collide keyword before a simlulation
can be performed. Using a surface reaction model is optional.

This command cannot be used before surfaces exist.

Related commands:

•

433

https://sparta.github.io

read_surf, bound_modify

Default:

The default for surface reactions is none.

434

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

surf_react command

surf_react adsorb command

Syntax:

surf_react ID style args

ID = user-assigned name for the surface reaction model•
style = global or prob or adsorb or global/kk or prob/kk•
args = arguments for that style

global or global/kk args = pdelete pcreate
 pdelete = probability that surface collision removes the incident particle
 pcreate = probability that surface collision clones the incident particle

prob or prob/kk args = infile
 infile = file with list of surface chemistry reactions

adsorb args = model infile(s) n=Nsync type temp n_sites adsp1 adsp2 ...
 model = gs or ps or gs/ps
 gs = gas-surface reactions
 ps = pure-surface reactions
 gs/ps = both gas-surface and pure-surface reactions
 infile(s) = file(s) with list of surface chemistry reactions
 one file for model gs or ps
 two files for model gs/ps, gs first, ps second
 Nsync = perform PS reactions and sync across processors every this many timesteps
 type = face or surf
 face = domain boundary treated as a surface
 surf = surface elements = triangles in 3d, lines in 2d
 temp = temperature of the surface
 n_sites = # of available adsorption sites per unit area (3D) or length (2D)
 adsp1,adsp2,... = list of species that can adsorb on surface

•

Examples:

surf_react 1 global 0.2 0.15
surf_react 1 prob air.surf
surf_react 1 adsorb gs gs_react.surf nsync 10 surf 1000 6.022e18 O CO
surf_react 1 adsorb gs/ps gs_react.surf ps_react.surf nsync 1 face 300 3e9 O

Description:

Define a model for surface chemistry reactions occurring when particles collide with surface elements or the
global boundaries of the simulation box. The asorb model also has an option to encode chemical reactions that
can occur on the surface itself.

One or more models can be defined and assigned to different surfaces or simulation box boundaries via the
surf_modify or bound_modify commands. See Section 6.9 for more details of how SPARTA defines surfaces as
collections of geometric elements, triangles in 3d and line segments in 2d. Also see the react command for
specification of a gas-phase chemistry reaction model.

The ID for a surface reaction model is used to identify it in other commands. Each surface reaction model ID must
be unique. The ID can only contain alphanumeric characters and underscores.

435

https://sparta.github.io

The surface reaction models for the different styles are described below. When a a particle collides with a surface
element or boundary, the list of all reactions possible with that species as a reactant is looped over. A probability
for each reaction is calculated, using the formulas discussed below, and a random number is used to decide which
reaction (if any) takes place. A check is made that the sum of probabilities for all possible reactions is <= 1.0,
which should normally be the case if reasonable reaction coefficients are defined.

IMPORTANT NOTE: A surface reaction model cannot be specified for surfaces whose surface collision style
does not support reactions. Currently this is only the vanish collision style. See the surf_collide doc page for
details.

The global style is a simple model that can be used to test whether surface reactions are occurring as expected.
There is no list of reactions for different species; all species are treated the same. This style thus defines two
universal reactions, the first for particle deletion, the second for particle creation.

The global style takes two parameters, pdelete and pcreate. The first is the probability that a "deletion" reaction
takes place when a collision occurs. If it does, the particle is deleted. The second is the probablity that a "creation"
reaction occurs, which clones the particle, so that one particle becomes two. The two particles leave the surface
according to whatever surface collision model is defined by the surf_collide command, and is assigned to that
surface/boundary by the surf_modify collide command.

The sum of pdelete and pcreate must be <= 1.0.

Note that if you simply wish to delete all particles which hit the surface, you can use the surf_collide vanish
command, which is simpler.

For the prob style, a file is specified which contains a list of surface chemical reactions, with their associated
parameters. The reactions are read into SPARTA and stored in a list. Each time a simulation is run via the run
command, the list is scanned. Only reactions for which all the reactants and all the products are currently defined
as species-IDs will be active for the simulation. Thus the file can contain more reactions than are used in a
particular simulation. See the species command for how species IDs are defined. This style thus defines N
reactions, where N is the number of reactions listed in the specified file.

As explained below each reaction has a specified probability between 0.0 and 1.0. That probability is used to
choose which reaction (if any) is performed.

The format of the input surface reaction file is as follows. Comments or blank lines are allowed in the file.
Comment lines start with a "#" character. All other entries must come in 2-line pairs with values separated by
whitespace in the following format

R1 --> P1 + P2
type style C1 C2 ...

The first line is a text-based description of a single reaction. R1 is a single reactant for the particle that collides
with the surface/boundary, listed as a species IDs. P1 and P2 are one or two products, also listed as species IDs.
The number of reactants is always 1. The number of allowed products depends on the reaction type, as discussed
below. Individual reactants and products must be separated by whitespace and a "+" sign. The left-hand and
right-hand sides of the equation must be separated by whitespace and "-->".

The type of each reaction is a single character (upper or lower case) with the following meaning. The type
determines how many reactants and products can be specified in the first line.

D = dissociation = 1 reactant and 2 products
E = exchange = 1 reactant and 1 product

436

R = recombination = 1 reactant and 1 product named NULL

A dissociation reaction means that R1 dissociates into P1 and P2 when it collides with the surface/boundary.
There is no restriction on the species involved in the reaction.

An exchange reaction is a collision where R1 becomes a new product P1. There is no restriction on the species
involved in the reaction.

A recombination reaction is a collision where R1 is absorbed by the surface, so that the particle disappears. There
are no products which is indicated in the file by listing a single product as NULL. There is no restriction on the
species involved in the reaction.

The style of each reaction is a single character (upper or lower case) with the following meaning:

S = Surface•

The style determines how many reaction coefficients are listed as C1, C2, etc, and how they are interpreted by
SPARTA.

For S = Surface style, there are two coefficients. The first is required and the second is optional and will be set to
0.0 if not specified:

C1 = probability that the reaction occurs (0.0 to 1.0)•
C2 = catalytic chemical energy of reaction (optional, positive for exothermic)•

For the adsorb style, gas particles can adsorb on the surface. Adsorbed particles can then undergo reactions with
other adsorbed particles as well as with new gas-phase particles that strike the surface. Each surface element
stores its "state" for the counts of different particle species currently adsorbed on the element, which alters the
probablity for future reactions to take place.

A detailed description of the adsorb style and the list of reactions it supports is given on a separate
surf_react_adsorb doc page.

If the ambipolar approximation is being used, via the fix ambipolar command, then reactions which involve either
ambipolar ions or the ambipolar electron have more restricitve rules about the ordering of reactants and products,
than those described in the preceeding section for the prob style.

The first is an "exchange" reaction which converts an ambipolar ion into a neutral species. Internally this removes
the ambipolar electron associated with the ion. In the file of reactions this is done by having the reactant be an
ambipolar ion, and the product not be an ambipolar ion.

The second is a "dissociation" reaction where a neutral species is ionized by colliding with the surface/boundary,
creating an ambipolar ion and ambipolar electron. In the file of reactions this is done by having the reactant not be
an ambipolar ion, the first product be an ambipolar ion, and the second product be an ambipolar electron. The two
products must be specified in this order.

Output info:

All the surface reaction models calculate a global vector of values. The values can be used by the stats_style
command and by variables that define formulas. The latter means they can be used by any command that uses a
variable as input, e.g. "the fix ave/time command. See Section 4.4 for an overview of SPARTA output options.

437

The global, prob, and adsorb styles each compute a vector of length 2 + 2*nlist. For the global style, nlist = 2, for
"delete" and "create" reactions. For the prob style, nlist is the number of reactions listed in the file is read as input.
For the adsorb style, nlist is the sum of both the gas-surface and pure-surface reactions listed in the file(s) read as
input.

The first element of the vector is the count of particles that performed surface reactions for surface elements
assigned to this reaction model during the current timestep. The second element is the cummulative count of
particles that have performed reactions since the beginning of the current run. The next nlist elements are the
count of each individual reaction that occurred during the current timestep. The final nlist elements are the
cummulative count of each individual reaction since the beginning of the current run.

Styles with a kk suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in the Accelerating SPARTA section
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
different random number, round-off and precision issues.

These accelerated styles are part of the KOKKOS package. They are only enabled if SPARTA was built with that
package. See the Making SPARTA section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke SPARTA, or you can use the suffix command in your input script.

See the Accelerating SPARTA section of the manual for more instructions on how to use the accelerated styles
effectively.

Restrictions:

If specified with a kk suffix, this command can be used no more than twice in the same input script (active at the
same time).

Related commands:

react, surf_modify, bound_modify, surf_react_adsorb

Default: none

438

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

surf_react adsorb command

Syntax:

surf_react ID adsorb model infile(s) Nsync type temp n_sites adsp1 adsp2 ...

ID = user-assigned name for the surface reaction model•
style = adsorb•
model = gs or ps or gs/ps

 gs = gas-surface reactions
 ps = pure-surface reactions
 gs/ps = both gas-surface and pure-surface reactions

•

infile(s) = file(s) with list of surface chemistry reactions

 one file for model gs or ps
 two files for model gs/ps, gs file first, ps file second

•

Nsync = perform PS reactions and sync across processors every this many timesteps•
type = face or surf

 face = domain boundary treated as a surface
 surf = surface elements = triangles in 3d, lines in 2d

•

temp = temperature of the surface n_sites = # of available adsorption sites per unit area (3D) or length
(2D)

•

adsp1,adsp2,... = list of species that can adsorb on surface•

Examples:

surf_react adsorb gs gs_react.surf nsync 10 surf 1000 6.022e18 O CO
surf_react adsorb gs/ps gs_react.surf ps_react.surf nsync 1 face 300 3e9 O

Description:

Define a model for surface chemistry reactions to perform when particles collide with surface elements or the
global boundaries (faces) of the simulation box, which enables the particles to adsorb to the surface. This model
also has an option to encode chemical reactions that can occur on the surface itself.

One or more models can be defined and assigned to different surfaces or simulation box boundaries via the
surf_modify or bound_modify commands. See Section 6.9 for more details of how SPARTA defines surfaces as
collections of geometric elements, triangles in 3d and line segments in 2d. Also see the react command for
specification of a gas-phase chemistry reaction model.

The per-surface element species state computed and updated by this command can be output via the dump surf
command, using the s_name syntax to output any of the 5 custom surface state variables created by this surface
reaction model. They are as follows:

nstick_species = per-surf array with per-species counts•
nstick_total = per-surf vector with total count of all species•
area = per-surf area vector•
weight = per-surf weight vector•
tau = per-surf time-counter vector (see below)•

439

https://sparta.github.io

See the examples/surf_react_adsorb dir for scripts that use this surface reaction model.

The ID for a surface reaction model is used to identify it in other commands. Each surface reaction model ID must
be unique. The ID can only contain alphanumeric characters and underscores.

In this adsorb style, gas particles can adsorb on the surface. Adsorbed particles can then undergo reactions with
other adsorbed particles as well as with new gas-phase particles that strike the surface. Each surface element
stores its "state" for the counts of different particle species currently adsorbed on the element, which alters the
probablity for future reactions to take place.

When a particle adsorbs on the surface, a gas particle is deleted and the number of adsorbed particles of that
particular species is incremented. When a particle desorbs from the surface, a new gas particle is created and the
surface count is decremented. The exact location of the adsorbed particles is not stored; they are assumed to
uniformly distributed across the surface element.

One of three options is specified by the model keyword: gs or ps or gs/ps. This specifies one of two types of
reactions to perform, or both in the gs/ps case.

Gas-surface (GS) reactions involve both gas-phase and adsorbed/bulk species as reactants. Hence GS reactions
occur when gas particles collide with the surface. Pure-surface (PS) reactions involve only adsorbed/bulk
reactants and do not include any gas-phase atoms or molecules. They are performed once every Nsync timesteps
based on the current surface coverage of the various adsorbed species.

For GS reactions, when a particle collides with a surface element or boundary, the list of all reactions possible
with that species as the reactant is looped over. A probability for each reaction is calculated, using the formulas
discussed below, and a random number is used to decide which reaction (if any) takes place. A check is made that
the sum of probabilities for all possible reactions is <= 1.0, which should normally be the case if reasonable
reaction coefficients are defined.

For PS reactions, a time counter algorithm is used. Each reaction has a time counter tau that is increased by a
value of nsync*timestep if all the reactants are available. The rate for each reaction R is computed based on the
specified reaction rate constants as well as the surface coverage of the reactants. The product of the rate R and
time counter tau is normalized to obtain the probability for each of reaction; and a random number is used to
decide which reaction occurs. The chosen reaction is perforemd and its time counter is modified as follows:

Next the probabilities of each reaction are recomputed and a new reaction is chosen based on these probabilties
and performed. This process is repeated till the probability of all the reactions reaches zero. A detailed description
can be found in Swaminathan Gopalan et al. (SG18).

The infile argument(s) specify one or two filenames which contain a list of GS or PS reactions and their
associated parameters. Two files must be specified for the gs/ps model: a GS file first and a PS file second.

The reactions are read into SPARTA and stored as a list. Each time a simulation is run the list is scanned, and
only active reactions are flagged. In order for a reaction to be active, all the reactants and all the products must be
currently defined as species-IDs; and also all the surface reactants and products must be present within the list of
species that are allowed to adsorb on the surface. The list of surface species is provided at the end of the
surf_react adsorb command via the adsp1, adsp2, etc arguments.

440

Note that this means the reaction file(s) can contain more reactions than are used in a particular simulation.

As explained below each reaction has a specified probability between 0.0 and 1.0. That probability is used to
choose which reaction (if any) is performed.

The format of either a GS or PS reaction file is as follows. Comments or blank lines are allowed in the file.
Comment lines start with a "#" character. All other entries must come in 2 or more lines with values separated by
whitespace in the following format

R1(g) + R2(s) + R3(b) --> P1(g) + P2(s) + P3(b)
reaction-type reaction-style C1 C2 ...
scattering-model args

The first line is a text-based description of a single reaction. R1, R2, and R3 are the reactants; while P1, P2, and
P3 are the products listed as a species IDs. The phase of the reactants and products are species in the brackets
immediately following the species ID (no space). It can be one of the following

(g) - gas phase = gas particle striking or scattering from the surface
(s) - surface phase = adsorbed particle present on the surface
(b) - bulk phase = material which the surface is made of

For a GS reaction, R1 must be a gas-phase reactant. I.e. the particle species that collides with the
surface/boundary. For a PS reaction, R1 must be an adsorbed or bulk-phase species.

Individual reactants and products must be separated by whitespace and a "+" sign. The left-hand and right-hand
sides of the equation must be separated by whitespace and "-->". The type of each reaction is a string of characters
(upper or lower case). The different types of GS and PS reactions are described below.

The allowed types for GS reactions is as follows:

AA = Associative Adsorption•
DA = Dissociative Adsorption•
LH1 = Langmuir-Hinshelwood mechanism of type 1•
LH3 = Langmuir-Hinshelwood mechanism of type 3•
CD = Condensation reaction•
ER = Eley-Rideal mechanism•
CI = Collision-induced reaction•

An associative adsorption (AA) reaction means that R1(g) adsorbs on the surface to form P1(s) when it collides
with the surface/boundary.

A dissociative adsorption (DA) reaction means that R1(g) dissociates when it collides with the surface/boundary.
One or more of the dissociated products can adsorb on the surface and the rest of them scatter as gas-phase
products.

A Langmuir-Hinshelwood reaction of type 1 (LH1) means that R1(g) adsorbs on the surface when it collides with
the surface/boundary, and reacts quickly with the adsorbed species R2(s) or bulk-phase species R2(b) on the
surface to form gas-phase product P1(g).

A Langmuir-Hinshelwood reaction of type 3 (LH3) means that R1(g) adsorbs on the surface when it collides with
the surface/boundary, and reacts quickly with the adsorbed species R2(s) or bulk-phase species R2(b) on the
surface to form adsorbed product P1(s).

441

A condensation reaction (CR) means that R1(g) coalesces with the bulk material with which the surface is made
of, when it collides with the surface/boundary to form bulk-phase product P1(b).

An Eley-Rideal (ER) reaction means that R1(g) reacts quickly with adsorbed species R2(s) or bulk species R2(b)
when it collides with the surface/boundary to form gas-phase product P1(g).

A collision-induced (CI) reaction means that R1(g) causes the desorption of adsorbed species R2(s) when it
collides with the surface/boundary to form gas-phase products P1(g) (same species as R2). The incident gas-phase
particle can either adsorb P2(s) or scatter from the surface P2(g) post collision.

A detailed description of the various types of reactions can be found in Swaminathan Gopalan et al. (SG18). Here
is a table of examples for each type of GS reaction.

The allowed types for PS reactions is as follows:

DS = Desorption reaction•
LH2 = Langmuir-Hinshelwood mechanism of type 2•
LH4 = Langmuir-Hinshelwood mechanism of type 4•
SB = Sublimation reaction•

A desorption reaction (DR) means that R1(s) desorbs from the surface to form P1(g) whose final velocities are
determined by the provided scattering model.

A Langmuir-Hinshelwood reaction of type 2 (LH2) means that R1(s) adsorbed on the surface reacts with another
adsorbed species R2(s) or bulk-phase species R2(b) on the surface to form gas-phase product P1(g).

A Langmuir-Hinshelwood reaction of type 4 (LH4) means that R1(s) adsorbed on the surface reacts with another
adsorbed species R2(s) or bulk-phase species R2(b) on the surface to form adsorbed product P1(s).

A sublimation reaction (SR) means that R1(b), the bulk material undergoes a transformation from solid to gas, to
form gas-phase product P1(g).

442

A detailed description of the various types of reactions can be found in Swaminathan Gopalan et al. (SG18). Here
is a table of examples for each type of PS reaction.

The style of each reaction is a single character (upper or lower case) with the following meaning:

S = Simple•
A = Arrhenius•

IMPORTANT: The style of the reaction determines how many reaction coefficients are listed as C1, C2, etc, and
how they are interpreted by SPARTA.

For S = Simple style, there is a single coefficient:

C1 = direct value for the reaction rate constant

For A = Arrhenius style, there are three coefficients:

 A = pre-expoential factor
 b = temperature exponent
 Ea = activation energy for the reaction

The reaction rate constant is calculated in the following manner:

For all the reactions types which includes adsorption - AA, DA, LH1, LH3, and CD; the user must specify the
number of species that adsorb on the surface for the reaction as a argument after the reaction rate coefficients

Additional optional keywords for GS reactions can be used to define the reaction rate constant. These are kisliuk:
proposed by Kisliuk (Kisliuk57); and energy: proposed by Beckerle et al. (Beckerle89).

kisliuk args = A_k B_k Ea_k (only for reactions which includes adsorption - AA, DA, LH1, LH3, and CD)

A_k = pre-expoential factor
B_k = temperature exponent
Ea_k = activation energy for the adsorption

443

energy args = m n (only for CI)

m = energy exponent
n = polar angle exponent

The final rate of the reaction is computed by the product of the reaction rate constant and the surface coverage of
all the adsorbed reactants. The reaction probability is obtained by normalized all the reaction rates. A detailed
description can be found in Swaminathan Gopalan et al. (SG18).

If there are gas-phase products, there is an option to specify the model used to compute how the particle(s) scatter
from the surface for this reaction. This will override the surface collision model assigned to the surface element
using the surf_collide command. If no reaction-specific scattering model is desired, specify a NULL value.

Any of the following surface collision models can be used: specular, diffuse, adiabatic, cll, impulsive, td. The
scattering model style and its corresponding arguments are specified in the line following the reaction-style. If
there are two gas-phase products, two lines (for the first and second particle) can be specified. The arguments for
the different surface scattering models are the same as specified in the surf_collide command.

Output info:

All the surface reaction models calculate a global vector of values. The values can be used by the stats_style
command and by variables that define formulas. The latter means they can be used by any command that uses a
variable as input, e.g. the fix ave/time command. See Section 4.4 for an overview of SPARTA output options.

This adsorb style compute a vector of length 2 + 2*nlist. Nlist is the sum of both the GS and PS reactions listed in
the file(s) read as input. Note that this count includes all reactions in the files, not just the ones flagged as active
for a particular simulation.

The first element of the vector is the count of particles that performed surface reactions for surface elements
assigned to this reaction model during the current timestep. The second element is the cummulative count of
particles that have performed reactions since the beginning of the current run. The next nlist elements are the
count of each individual reaction that occurred during the current timestep. The final nlist elements are the
cummulative count of each individual reaction since the beginning of the current run.

Restrictions:

If the following conditions are met:

this reaction model is assigned to surface elements•
on-surface PS reactions are defined•

444

surface elements are distributed across processors•
the fix balance or fix adapt command is used•

then the timesteps on which balancing or grid adaptation are performed must be multiples of Nsync. This is
because surfaces are re-assigned to processors due to the change in the grid assignment to processors and the
per-surface tau values must be upated appropriately when that occurs.

Related commands:

surf_react, react, surf_modify, bound_modify,

Default: none

(SG18) K. Swaminathan Gopalan, "Development of a detailed surface chemistry framework in DSMC", AIAA
Aerospace Sciences Meeting, Jan (2018).

(Kisliuk57) P. Kisliuk, "The sticking probabilities of gases chemisorbed on the surfaces of solids", Journal of
Physics and Chemistry of Solids, vol. 3, no. 1-2, pp. 95-101, 1957.

(Beckerle89) J. Beckerle, A. Johnson, and S. Ceyer, "Observation and mechanism of collision-induced
desorption: CH4 on Ni (111)", Physical Review Letters, vol. 62, no. 6, p. 685, 1989.

445

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

timestep command

Syntax:

timestep dt

dt = timestep size (time units)•

Examples:

timestep 2.0
timestep 0.003

Description:

Set the timestep size for subsequent simulations.

Restrictions: none

Related commands:

run

Default:

timestep 1.0

446

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

uncompute command

Syntax:

uncompute compute-ID

compute-ID = ID of a previously defined compute•

Examples:

uncompute 2
uncompute lower-boundary

Description:

Delete a compute that was previously defined with a compute command.

Restrictions: none

Related commands:

compute

Default: none

447

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

undump command

Syntax:

undump dump-ID

dump-ID = ID of previously defined dump•

Examples:

undump mine
undump 2

Description:

Delete a dump that was previously defined with a dump command. This also closes the file associated with the
dump.

Restrictions: none

Related commands:

dump

Default: none

448

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

unfix command

Syntax:

unfix fix-ID

fix-ID = ID of a previously defined fix•

Examples:

unfix 2
unfix lower-boundary

Description:

Delete a fix that was previously defined with a fix command.

Restrictions: none

Related commands:

fix

Default: none

449

https://sparta.github.io

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

units command

Syntax:

units style

style = cgs or si•

Examples:

units cgs

Description:

This command sets the style of units used for a simulation. It determines the units of all quantities specified in the
input script and various input files read by SPARTA, as well as the units of all quantities output to the screen, log
file, dump files, and other output files. Typically, this command is used at the very beginning of an input script.

IMPORTANT NOTE: Internally, this command simply sets the numeric values of conversion factors used by
SPARTA, e.g. the Boltzmann constant used to convert temperature to energy. It is up to you to insure that all
input values used in the input script and other input files (surface data, species files, reaction files) contain
numeric values consistent with the chosen units.

For style cgs, these are the units:

mass = grams•
distance = centimeters•
area = cm^2•
volume = cm^3•
time = seconds•
energy = ergs•
velocity = centimeters/second•
acceleration = centimeters/second^2•
pressure = barye (dyne/cm^2 = 0.1 pascals)•
magnetic moment = ??•
temperature = degrees K•

For style si, these are the units:

mass = kilograms•
distance = meters•
area = m^2•
volume = m^3•
time = seconds•
energy = Joules•
velocity = meters/second•
acceleration = meters/second^2•
pressure = pascals (newton/meter^2)•
magnetic moment = ??•
temperature = degrees K•

450

https://sparta.github.io

The units command also sets a default timestep size; see the timestep command to change this value.

For style cgs this is dt = 1.0 sec.•
For style si this is dt = 1.0 sec.•

Restrictions:

This command must be used before the simulation box is defined by a create_box command.

Related commands: none

Default:

units si

451

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

variable command

Syntax:

variable name style args ...

name = name of variable to define•
style = delete or index or loop or world or universe or uloop or string or format or getenv or file or
internal or equal or particle or grid or surf

delete = no args
index args = one or more strings
loop args = N

 N = integer size of loop, loop from 1 to N inclusive
loop args = N pad

 N = integer size of loop, loop from 1 to N inclusive
 pad = all values will be same length, e.g. 001, 002, ..., 100

loop args = N1 N2
 N1,N2 = loop from N1 to N2 inclusive

loop args = N1 N2 pad
 N1,N2 = loop from N1 to N2 inclusive
 pad = all values will be same length, e.g. 050, 051, ..., 100

world args = one string for each partition of processors
universe args = one or more strings
uloop args = N

 N = integer size of loop
uloop args = N pad

 N = integer size of loop
 pad = all values will be same length, e.g. 001, 002, ..., 100

string arg = one string
format args = vname fstr

 vname = name of equal-style variable to evaluate
 fstr = C-style format string

getenv arg = one string
file arg = filename
internal arg = numeric value
equal or particle or grid or surf args = one formula

 containing numbers, stats keywords, math operations, particle vectors, compute/fix and custom attribute and surface collision/reaction and variable references
 numbers = 0.0, 100, -5.4, 2.8e-4, etc
 constants = PI
 stats keywords = step, np, vol, etc from stats_style
 math operators = (), -x, x+y, x-y, x*y, x/y, x^y, x%y,
 x==y, x!=y, x

•

Examples:

variable x index run1 run2 run3 run4 run5 run6 run7 run8
variable LoopVar loop $n
variable beta equal vol/ngrid
variable beta equal "vol / ngrid"
variable b equal c_myTemp
variable b particle x*y/vol
variable foo string myfile
variable foo internal 3.5
variable f file values.txt
variable temp world 300.0 310.0 320.0 ${Tfinal}
variable x universe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
variable x uloop 15 pad
variable str format x %.6g

452

https://sparta.github.io

variable x delete

Description:

This command assigns one or more strings to a variable name for evaluation later in the input script or during a
simulation.

Variables can thus be useful in several contexts. A variable can be defined and then referenced elsewhere in an
input script to become part of a new input command. For variable styles that store multiple strings, the next
command can be used to increment which string is assigned to the variable. Variables of style equal store a
formula which when evaluated produces a single numeric value which can be output either directly (see the print,
fix print, and run every commands) or as part of statistical output (see the stats_style command), or used as input
to an averaging fix (see the fix ave/time command). Variables of style particle or grid or surf store a formula
which when evaluated produces one numeric value per particle or grid cell or surface element which can be
output to the appropriate styles of dump file (see the dump command). Variables of style internal are used by a
few commands which set their value directly.

In the discussion that follows, the "name" of the variable is the arbitrary string that is the 1st argument in the
variable command. This name can only contain alphanumeric characters and underscores. The "string" is one or
more of the subsequent arguments. The "string" can be simple text as in the 1st example above, it can contain
other variables as in the 2nd example, or it can be a formula as in the 3rd example. The "value" is the numeric
quantity resulting from evaluation of the string. Note that the same string can generate different values when it is
evaluated at different times during a simulation.

IMPORTANT NOTE: When an input script line is encountered that defines a variable of style equal or particle or
grid of surf that contains a formula, the formula is NOT immediately evaluated and the result stored. See the
discussion below about "Immediate Evaluation of Variables" if you want to do this. This is also true of the format
style variable since it evaluates another variable when it is invoked.

Variables of style equal and particle and grid and surf can be used as inputs to various other commands which
evaluate their formulas as needed, e.g. at different timesteps during a run.

Variables of style internal can be used in place of an equal-style variable, except by commands that set the value
stored by the internal-style variable. Thus any command that states it can use an equal-style variable as an
argument, can also use an internal-style variable. This means that when the command evaluates the variable, it
will use the value set (internally) by another command.

IMPORTANT NOTE: When a variable command is encountered in the input script and the variable name has
already been specified, the command is ignored. This means variables can NOT be re-defined in an input script
(with 2 exceptions, read further). This is to allow an input script to be processed multiple times without resetting
the variables; see the jump or include commands. It also means that using the command-line switch -var will
override a corresponding index variable setting in the input script.

There are two exceptions to this rule. First, variables of style string, getenv, internal, equal, particle, grid, and
surf ARE redefined each time the command is encountered. This allows these style of variables to be redefined
multiple times in an input script. In a loop, this means the formula associated with an equal or particle or grid or
surf style variable can change if it contains a substitution for another variable, e.g. $x or v_x.

Second, as described below, if a variable is iterated on to the end of its list of strings via the next command, it is
removed from the list of active variables, and is thus available to be re-defined in a subsequent variable command.
The delete style does the same thing.

453

Section 3.2 of the manual explains how occurrences of a variable name in an input script line are replaced by the
variable's string. The variable name can be referenced as $x if the name "x" is a single character, or as
${LoopVar} if the name "LoopVar" is one or more characters.

As described below, for variable styles index, loop, universe, and uloop, which string is assigned to a variable can
be incremented via the next command. When there are no more strings to assign, the variable is exhausted and a
flag is set that causes the next jump command encountered in the input script to be skipped. This enables the
construction of simple loops in the input script that are iterated over and then exited from.

As explained above, an exhausted variable can be re-used in an input script. The delete style also removes the
variable, the same as if it were exhausted, allowing it to be redefined later in the input script or when the input
script is looped over. This can be useful when breaking out of a loop via the if and jump commands before the
variable would become exhausted. For example,

label loop
variable a loop 5
print "A = $a"
if "$a > 2" then "jump in.script break"
next a
jump in.script loop
label break
variable a delete

This section describes how various variable styles are defined and what they store. Many of the styles store one or
more strings. Note that a single string can contain spaces (multiple words), if it is enclosed in quotes in the
variable command. When the variable is substituted for in another input script command, its returned string will
then be interpreted as multiple arguments in the expanded command.

For the index style, one or more strings are specified. Initially, the 1st string is assigned to the variable. Each time
a next command is used with the variable name, the next string is assigned. All processors assign the same string
to the variable.

Index style variables with a single string value can also be set by using the command-line switch -var; see Section
2.6 of the manual for details.

The loop style is identical to the index style except that the strings are the integers from 1 to N inclusive, if only
one argument N is specified. This allows generation of a long list of runs (e.g. 1000) without having to list N
strings in the input script. Initially, the string "1" is assigned to the variable. Each time a next command is used
with the variable name, the next string ("2", "3", etc) is assigned. All processors assign the same string to the
variable. The loop style can also be specified with two arguments N1 and N2. In this case the loop runs from N1
to N2 inclusive, and the string N1 is initially assigned to the variable. N1 <= N2 and N2 >= 0 is required.

For the world style, one or more strings are specified. There must be one string for each processor partition or
"world". See Section 2.6 of the manual for information on running SPARTA with multiple partitions via the
"-partition" command-line switch. This variable command assigns one string to each world. All processors in the
world are assigned the same string. The next command cannot be used with equal style variables, since there is
only one value per world. This style of variable is useful when you wish to run different simulations on different
partitions.

For the universe style, one or more strings are specified. There must be at least as many strings as there are
processor partitions or "worlds". See this page for information on running SPARTA with multiple partitions via
the "-partition" command-line switch. This variable command initially assigns one string to each world. When a
next command is encountered using this variable, the first processor partition to encounter it, is assigned the next
available string. This continues until all the variable strings are consumed. Thus, this command can be used to run

454

50 simulations on 8 processor partitions. The simulations will be run one after the other on whatever partition
becomes available, until they are all finished. Universe style variables are incremented using the files
"tmp.sparta.variable" and "tmp.sparta.variable.lock" which you will see in your directory during such a SPARTA
run.

The uloop style is identical to the universe style except that the strings are the integers from 1 to N. This allows
generation of long list of runs (e.g. 1000) without having to list N strings in the input script.

For the string style, a single string is assigned to the variable. The only difference between this and using the
index style with a single string is that a variable with string style can be redefined. E.g. by another command later
in the input script, or if the script is read again in a loop.

For the format style, an equal-style variable is specified along with a C-style format string, e.g. "%f" or "%.10g",
which must be appropriate for formatting a double-precision floating-point value. This allows an equal-style
variable to be formatted specifically for output as a string, e.g. by the print command, if the default format
"%.15g" has too much precision.

For the getenv style, a single string is assigned to the variable which should be the name of an environment
variable. When the variable is evaluated, it returns the value of the environment variable, or an empty string if it
not defined. This style of variable can be used to adapt the behavior of SPARTA input scripts via environment
variable settings, or to retrieve information that has been previously stored with the shell putenv command. Note
that because environment variable settings are stored by the operating systems, they persist beyond a clear
command.

For the file style, a filename is provided which contains a list of strings to assign to the variable, one per line. The
strings can be numeric values if desired. See the discussion of the next() function below for equal-style variables,
which will convert the string of a file-style variable into a numeric value in a formula.

When a file-style variable is defined, the file is opened and the string on the first line is read and stored with the
variable. This means the variable can then be evaluated as many times as desired and will return that string. There
are two ways to cause the next string from the file to be read: use the next command or the next() function in an
equal- or particle- or grid-style variable, as discussed below.

The rules for formatting the file are as follows. A comment character "#" can be used anywhere on a line; text
starting with the comment character is stripped. Blank lines are skipped. The first "word" of a non-blank line,
delimited by white space, is the "string" assigned to the variable.

For the internal style a numeric value is provided. This value will be assigned to the variable until a SPARTA
command sets it to a new value. There is currently only one command that requirew internal variables as inputs,
because it resets them: create_particles. As mentioned above, an internal-style variable can be used in place of an
equal-style variable anywhere else in an input script, e.g. as an argument to another command that allows for
equal-style variables.

For the equal, particle, grid, and surf styles, a single string is specified which represents a formula that will be
evaluated afresh each time the variable is used. If you want spaces in the string, enclose it in double quotes so the
parser will treat it as a single argument. For equal style variables the formula computes a scalar quantity, which
becomes the value of the variable whenever it is evaluated.

For particle style variables the formula computes one quantity for each particle whenever it is evaluated. For grid
style variables the formula computes one quantity for each grid cell whenever it is evaluated. A grid style variable
computes quantites for all flavors of child grid cells in the simulation, which includes unsplit, cut, split, and sub
cells. See Section 4.8 of the manual gives details of how SPARTA defines child, unsplit, split, and sub cells. For

455

surf style variables the formula computes one quantity for each surface element (line or triangle) whenever it is
evaluated. They can only be defined for explicit surfaces, not implicit surfaces. See Section 4.9 of the manual for
a description of both kinds of surface elements.

Note that equal, particle, grid, and surf variables can produce different values at different stages of the input
script or at different times during a run. For example, if an equal variable is used in a fix print command, different
values could be printed each timestep it was invoked. If you want a variable to be evaluated immediately, so that
the result is stored by the variable instead of the string, see the section below on "Immediate Evaluation of
Variables".

The next command cannot be used with equal, particle, grid, or surf style variables, since there is only one string.

The formula for an equal, particle, grid, or surf variable can contain a variety of quantities. The syntax for each
kind of quantity is simple, but multiple quantities can be nested and combined in various ways to build up
formulas of arbitrary complexity. For example, this is a valid (though strange) variable formula:

variable x equal "np + c_MyTemp / vol^(1/3)"

Specifically, a formula can contain numbers, stats keywords, math operators, math functions, particle vectors, grid
vectors, compute references, fix references, custom attribute references, and other variables.

Number 0.2, 100, 1.0e20, -15.4, etc
Constant PI
Stats keywords step, np, vol, etc
Math operators (), -x, x+y, x-y, x*y, x/y, x^y, x%y, x==y, x!=y, xy, x>=y, x&&y, x||y, !x

Math functions

sqrt(x), exp(x), ln(x), log(x), abs(x), sin(x), cos(x), tan(x), asin(x), acos(x),
atan(x), atan2(y,x), erf(x), random(x,y,z), normal(x,y,z), ceil(x), floor(x),
round(x), ramp(x,y), stagger(x,y), logfreq(x,y,z), stride(x,y,z), vdisplace(x,y),
swiggle(x,y,z), cwiggle(x,y,z)

Special functions sum(x), min(x), max(x), ave(x), trap(x), slope(x), next(x), grid2part(x)
Particle vectors id, type, mass, q, mu, x, y, z, vx, vy, vz
Grid vectors = cxlo, cxhi, cylo,
cyhi, czlo, czhi
Compute references c_ID, c_ID[I], c_ID[I][J]
Fix references f_ID, f_ID[I], f_ID[I][J]
Custom attribute references =
name_ID, name_ID[I], name_ID,
name_ID[I], name_ID, name_ID[I]
Surface collision model references sc_ID[I]
Surface reaction model references sr_ID[I]
Other variables v_name

Most of the formula elements produce a scalar value. A few produce a per-particle vector or per-grid vector or
per-surf vector of values. These are the particle vectors, grid vectors, compute and fix references that represent a
per-particle or per-grid vector or per-surf vector, and variables that are particle-style or grid-style or surf-style
variables. Math functions that operate on scalar values produce a scalar value; math functions that operate on
per-particle or per-grid or per-surf vectors do so element-by-element and produce a per-particle or per-grid or
per-surf vectors.

456

A formula for equal-style variables cannot use any formula element that produces a per-particle or per-grid or
per-surf vector. A formula for a particle-style variable can use formula elements that produce either a scalar value
or a per-particle vector, but not a per-grid or per-surf vector. Likewise a grid-style variable can use formula
elements that produce either a scalar value or a per-grid vector, but not a per-particle or per-surf vector. And a
surf-style variable can use formula elements that produce either a scalar value or a per-surf vector, but not a
per-particle or per-grid vector.

The stats keywords allowed in a formula are those defined by the stats_style custom command.

Math Operators

Math operators are written in the usual way, where the "x" and "y" in the examples can themselves be arbitrarily
complex formulas, as in the examples above. In this syntax, "x" and "y" can be scalar values or per-particle or
per-grid vectors. For example, "vol/np" is the division of two scalars, where "vy+vz" is the element-by-element
sum of two per-particle vectors of y and z velocities.

Operators are evaluated left to right and have the usual C-style precedence: unary minus and unary logical NOT
operator "!" have the highest precedence, exponentiation "^" is next; multiplication and division and the modulo
operator "%" are next; addition and subtraction are next; the 4 relational operators "", and ">=" are next; the two
remaining relational operators "==" and "!=" are next; then the logical AND operator "&&"; and finally the
logical OR operator "||" has the lowest precedence. Parenthesis can be used to group one or more portions of a
formula and/or enforce a different order of evaluation than what would occur with the default precedence.

IMPORTANT NOTE: Because a unary minus is higher precedence than exponentiation, the formula "-2^2" will
evaluate to 4, not -4. This convention is compatible with some programming languages, but not others. As
mentioned, this behavior can be easily overridden with parenthesis; the formula "-(2^2)" will evaluate to -4.

The 6 relational operators return either a 1.0 or 0.0 depending on whether the relationship between x and y is
TRUE or FALSE. For example the expression x

These relational and logical operators can be used as a masking or selection operation in a formula. For example,
the number of particles whose properties satifsy one or more criteria could be calculated by taking the returned
per-particle vector of ones and zeroes and passing it to the compute reduce command.

Math Functions

Math functions are specified as keywords followed by one or more parenthesized arguments "x", "y", "z", each of
which can themselves be arbitrarily complex formulas. In this syntax, the arguments can represent scalar values or
per-particle or per-grid vectors. In the latter cases, the math operation is performed on each element of the vector.
For example, "sqrt(np)" is the sqrt() of a scalar, where "sqrt(y*z)" yields a per-particle vector with each element
being the sqrt() of the product of one particle's y and z coordinates.

Most of the math functions perform obvious operations. The ln() is the natural log; log() is the base 10 log.

The random(x,y) function takes 2 arguments: x = lo and y = hi. It generates a uniform random number between lo
and hi. The normal(x,y) function also takes 2 arguments: x = mu and y = sigma. It generates a Gaussian variate
centered on mu with variance sigma^2. For equal-style variables, every processor uses the same random number
seed so that they each generate the same sequence of random numbers. For particle-style or grid-style variables, a
unique seed is created for each processor. This effectively generates a different random number for each particle
or grid cell being looped over in the particle-style or grid-style variable.

457

IMPORTANT NOTE: Internally, there is just one random number generator for all equal-style variables and one
for all particle-style and grid-style variables. If you define multiple variables (of each style) which use the
random() or normal() math functions, then the internal random number generators will only be initialized once.

The ceil(), floor(), and round() functions are those in the C math library. Ceil() is the smallest integer not less than
its argument. Floor() if the largest integer not greater than its argument. Round() is the nearest integer to its
argument.

The ramp(x,y) function uses the current timestep to generate a value linearly intepolated between the specified x,y
values over the course of a run, according to this formula:

value = x + (y-x) * (timestep-startstep) / (stopstep-startstep)

The run begins on startstep and ends on stopstep. Startstep and stopstep can span multiple runs, using the start and
stop keywords of the run command. See the run command for details of how to do this.

IMPORTANT NOTE: Currently, the run command does not currently support the start/stop keywords. In the
formula above startstep = 0 and stopstep = the number of timesteps being performed by the run.

The stagger(x,y) function uses the current timestep to generate a new timestep. X,y > 0 and x > y are required.
The generated timesteps increase in a staggered fashion, as the sequence x,x+y,2x,2x+y,3x,3x+y,etc. For any
current timestep, the next timestep in the sequence is returned. Thus if stagger(1000,100) is used in a variable by
the dump_modify every command, it will generate the sequence of output timesteps:

100,1000,1100,2000,2100,3000,etc

The logfreq(x,y,z) function uses the current timestep to generate a new timestep. X,y,z > 0 and y < z are required.
The generated timesteps increase in a logarithmic fashion, as the sequence
x,2x,3x,...y*x,z*x,2*z*x,3*z*x,...y*z*x,z*z*x,2*z*x*x,etc. For any current timestep, the next timestep in the
sequence is returned. Thus if logfreq(100,4,10) is used in a variable by the dump_modify every command, it will
generate the sequence of output timesteps:

100,200,300,400,1000,2000,3000,4000,10000,20000,etc

The stride(x,y,z) function uses the current timestep to generate a new timestep. X,y >= 0 and z > 0 and x <= y are
required. The generated timesteps increase in increments of z, from x to y, I.e. it generates the sequece
x,x+z,x+2z,...,y. If y-x is not a multiple of z, then similar to the way a for loop operates, the last value will be one
that does not exceed y. For any current timestep, the next timestep in the sequence is returned. Thus if
stagger(1000,2000,100) is used in a variable by the dump_modify every command, it will generate the sequence
of output timesteps:

1000,1100,1200, ... ,1900,2000

The vdisplace(x,y) function takes 2 arguments: x = value0 and y = velocity, and uses the elapsed time to change
the value by a linear displacement due to the applied velocity over the course of a run, according to this formula:

value = value0 + velocity*(timestep-startstep)*dt

where dt = the timestep size.

The run begins on startstep. Startstep can span multiple runs, using the start keyword of the run command. See
the run command for details of how to do this. Note that the stats_style keyword elaplong = timestep-startstep.

458

The swiggle(x,y,z) and cwiggle(x,y,z) functions each take 3 arguments: x = value0, y = amplitude, z = period.
They use the elapsed time to oscillate the value by a sin() or cos() function over the course of a run, according to
one of these formulas, where omega = 2 PI / period:

value = value0 + Amplitude * sin(omega*(timestep-startstep)*dt)
value = value0 + Amplitude * (1 - cos(omega*(timestep-startstep)*dt))

where dt = the timestep size.

The run begins on startstep. Startstep can span multiple runs, using the start keyword of the run command. See
the run command for details of how to do this. Note that the stats_style keyword elaplong = timestep-startstep.

Special Functions

Special functions take specific kinds of arguments, meaning their arguments cannot be formulas themselves.

The sum(x), min(x), max(x), ave(x), trap(x), and slope(x) functions each take 1 argument which is of the form
"c_ID" or "c_ID[N]" or "f_ID" or "f_ID[N]". The first two are computes and the second two are fixes; the ID in
the reference should be replaced by the ID of a compute or fix defined elsewhere in the input script. The compute
or fix must produce either a global vector or array. If it produces a global vector, then the notation without "[N]"
should be used. If it produces a global array, then the notation with "[N]" should be used, when N is an integer, to
specify which column of the global array is being referenced.

These functions operate on the global vector of inputs and reduce it to a single scalar value. This is analagous to
the operation of the compute reduce command, which invokes the same functions on per-particle or per-grid
vectors.

The sum() function calculates the sum of all the vector elements. The min() and max() functions find the
minimum and maximum element respectively. The ave() function is the same as sum() except that it divides the
result by the length of the vector.

The trap() function is the same as sum() except the first and last elements are multiplied by a weighting factor of
1/2 when performing the sum. This effectively implements an integratiion via the trapezoidal rule on the global
vector of data. I.e. consider a set of points, equally spaced by 1 in their x coordinate: (1,V1), (2,V2), ..., (N,VN),
where the Vi are the values in the global vector of length N. The integral from 1 to N of these points is trap().

The slope() function uses linear regression to fit a line to the set of points, equally spaced by 1 in their x
coordinate: (1,V1), (2,V2), ..., (N,VN), where the Vi are the values in the global vector of length N. The returned
value is the slope of the line. If the line has a single point or is vertical, it returns 1.0e20.

The next(x) function takes 1 argument which is a variable ID (not "v_foo", just "foo"). It must be for a file-style
variable. Each time the next() function is invoked (i.e. each time the equal-style or particle-style or grid-style
variable is evaluated), the following steps occur.

For file-style variables, the current string value stored by the file-style variable is converted to a numeric value
and returned by the function. And the next string value in the file is read and stored. Note that if the line
previously read from the file was not a numeric string, then it will typically evaluate to 0.0, which is likely not
what you want.

Since file-style variables read and store the first line of the file when they are defined in the input script, this is the
value that will be returned the first time the next() function is invoked. If next() is invoked more times than there
are lines in the file, the variable is deleted, similar to how the next command operates.

459

The grid2part(x) function can only be used in a particle-style variable formula. Its purpose is to enable each
particle to access a per-grid quantity for the grid cell it is currently in. The per-grid quantity must be produced by
a compute or fix. When the particle-style variable formula is evaluated for each particle, the per-grid vector or
array from the compute or fix is accessed, using the grid cell index for each particle.

An example of its usage is as follows:

variable csq particle "vx*vx + vy*vy + vz*vz"
compute therm thermal/grid all all temp press
variable csq_norm particle v_csq/grid2part(c_therm1)

The per-particle variable csq_norm will calculate the kinetic energy for each particle, normalized by the thermal
temperature of the full set of particles for the grid cell it is in. The latter is computed by the compute thermal/grid
command.

The grid2part(x) function takes 1 argument which is of the form "c_ID" or "c_ID[N]" or "f_ID" or "f_ID[N]". The
first two are computes and the second two are fixes; the ID in the reference should be replaced by the ID of a
compute or fix defined elsewhere in the input script. The compute or fix must produce either a per-grid vector or
array. If it produces a per-grid vector, then the notation without "[N]" should be used. If it produces a per-grid
array, then the notation with "[N]" should be used, when N is an integer, to specify which column of the per-grid
array is being referenced.

Particle Vectors

Particle vectors generate one value per particle, so that a reference like "vx" means the x-component of each
particles's velocity will be used when evaluating the variable. The reference "type" is an integer index
representing the particle species. It is a value from 1 to Nspecies. The value corresponds to the order in which
species were defined via the species command.

Particle vectors for mass and q and mu are per-species values. "Mass" is the mass for the particle's species, "q" is
the particle's charge, "mu" is its magnetic moment.

The meaning of the other particle vectors should be self-explanatory.

Particle vectors can only be used in particle style variables, not in equal or grid or surf style varaibles.

Grid Vectors

Grid vectors generate one value per grid cell, so that a reference like "cxhi" means the x-component of each grid
cell's upper right corner will be used when evaluating the variable.

The meaning of the other grid vectors should be self-explanatory.

Grid vectors can only be used in grid style variables, not in equal or particle or surf style varaibles.

Compute References

Compute references access quantities calculated by a compute. The ID in the reference should be replaced by the
ID of a compute defined elsewhere in the input script. As discussed in the doc page for the compute command,
computes can produce global, per-particle, per-grid, or per-surf values. Computes can also produce a scalar,
vector, or array. See the doc pages for individual computes to see what kind of values they produce.

460

An equal-style variable can only use scalar values, which means a global scalar, or an element of a global vector
or array. Particle-style variables can use the same scalar values. They can also use per-particle vector values. A
vector value can be a per-particle vector itself, or a column of an per-particle array. Grid-style variables can use
the same scalar values. They can also use per-grid vector values. A vector value can be a per-grid vector itself, or
a column of an per-grid array. Surf-style variables can use the same scalar values. They can also use per-surf
vector values. A vector value can be a per-surf vector itself, or a column of an per-surf array.

Examples of different kinds of compute references are as follows. There is no ambiguity as to what a reference
means, since computes only produce global, per-particle, per-grid, or per-surf quantities, never more than one
kind of quantity.

c_ID global scalar, or per-particle or per-grid or per-surf vector
c_ID[I] Ith element of global vector, or Ith column from per-particle or per-grid or per-surf array
c_ID[I][J] I,J element of global array

For I and J, integers can be specified or a variable name, specified as v_name, where name is the name of the
variable, like x[v_myIndex]. The variable can be of any style expect particle-style. The variable is evaluated and
the result is expected to be numeric and is cast to an integer (i.e. 3.4 becomes 3), to use an an index, which must
be a value from 1 to N. Note that a "formula" cannot be used as the argument between the brackets, e.g.
x[243+10] or x[v_myIndex+1] are not allowed. To do this a single variable can be defined that contains the
needed formula.

If a variable containing a compute is evaluated directly in an input script (not during a run), then the values
accessed by the compute must be current. See the discussion below about "Variable Accuracy".

Fix References

Fix references access quantities calculated by a fix. The ID in the reference should be replaced by the ID of a fix
defined elsewhere in the input script. As discussed in the doc page for the fix command, fixes can produce global,
per-particle, per-grid, or per-surf values. Fixes can also produce a scalar, vector, or array. See the doc pages for
individual fixes to see what kind of values they produce.

An equal-style variable can only use scalar values, which means a global scalar, or an element of a global vector
or array. Particle-style variables can use the same scalar values. They can also use per-particle vector values. A
vector value can be a per-particle vector itself, or a column of an per-particle array. Grid-style variables can use
the same scalar values. They can also use per-grid vector values. A vector value can be a per-grid vector itself, or
a column of an per-grid array. Surf-style variables can use the same scalar values. They can also use per-surf
vector values. A vector value can be a per-surf vector itself, or a column of an per-surf array.

The different kinds of fix references are exactly the same as the compute references listed in the above table,
where "c_" is replaced by "f_". Again, there is no ambiguity as to what a reference means, since fixes only
produce global or per-particle or per-grid quantities, never more than one kind of quantity.

f_ID global scalar, or per-particle or per-grid or per-surf vector
f_ID[I] Ith element of global vector, or Ith column from per-particle or per-grid or per-surf array
f_ID[I][J] I,J element of global array

For I and J, integers can be specified or a variable name, specified as v_name, where name is the name of the
variable. The rules for this syntax are the same as for the "Compute References" discussion above.

If a variable containing a fix is evaluated directly in an input script (not during a run), then the values accessed by
the fix should be current. See the discussion below about "Variable Accuracy".

461

Note that some fixes only generate quantities on certain timesteps. If a variable attempts to access the fix on
non-allowed timesteps, an error is generated. For example, the fix ave/time command may only generate averaged
quantities every 100 steps. See the doc pages for individual fix commands for details.

Custom Attribute References

Particles, grid cells, and surface elements can have custom attributes which store either single or multiple values
per particle, per grid cell, or per surface element. They can be defined and initialized in data files, e.g. via the
read_surf command. Or they can be defined and used by specific commands, e.g. fix ambipolar or fix surf/temp or
surf_react adsorb. The name of each attribute sis set by the user or defined by the command. See Section 6.17 for
more discussion of custom attributes.

Single-value attributes are referred to as per-particle, per-grid, or per-surf vectors. Multiple-value attributes are
referred to as per-particle, per-grid, or per-surf arrays. In variable formulas they can be referenced using the
following syntax:

p_name per-particle vector
p_name[I] Ith column from a per-particle array
g_name per-grid vector
g_name[I] Ith column from a per-grid array
s_name per-surf vector
s_name[I] Ith column from a per-surf array

Particle attributes can only be used in particle-style variables. Grid cell attributes can only be used in grid-style
variables. Surface element attributes can only be used in surf-style variables.

Surface Collision and Surface Reaction Model References

These references access quantities calculated by a surf_collide or surf_react command. The ID in the reference
should be replaced by the ID of a surface collision or surface reaction model defined elsewhere in the input script.
As discussed in the doc pages for the surf_collide and surf_react commands, these commmands produce global
vectors, the elements of which can be accessed by equal-style, particle-style, grid-style, or surf-style variables,
e.g.

sc_ID[I] Ith element of global vector for a surface collision model
sr_ID[I] Ith element of global vector for a surface reaction model

Variable References

Variable references access quantities stored or calculated by other variables, which will cause those variables to
be evaluated. The name in the reference should be replaced by the name of a variable defined elsewhere in the
input script.

As discussed on this doc page, equal-style variables generate a global scalar numeric value; particle-style
variables generate a per-particle vector of numeric values; grid-style variables generate a per-grid vector of
numeric values; surf-style variables generate a per-surf vector of numeric values; all other variables store a string.

The formula for an equal-style variable can use any style of variable except a particle- or grid- or surf-style. The
formula for a particle-style variable can use any style of variable except a grid- or surf-style. The formula for a
grid-style variable can use any style of variable except a particle- or surf-style. The formula for a surf-style
variable can use any style of variable except a particle- or grid-style.

462

If a string-storing variable is used, the string is converted to a numeric value. Note that this will typically produce
a 0.0 if the string is not a numeric string, which is likely not what you want.

Examples of different kinds of variable references are as follows. There is no ambiguity as to what a reference
means, since variables produce only a global scalar or a per-particle or per-grid or per-surf vector, never more
than one of these quantities.

v_name equal- or particle- or grid- or surf-style variable

Immediate Evaluation of Variables:

There is a difference between referencing a variable with a leading $ sign (e.g. $x or ${abc}) versus with a
leading "v_" (e.g. v_x or v_abc). The former can be used in any input script command, including a variable
command. The input script parser evaluates the reference variable immediately and substitutes its value into the
command. As explained in Section commands 3.2 for "Parsing rules", you can also use un-named "immediate"
variables for this purpose. For example, a string like this $((xlo+xhi)/2+sqrt(v_area)) in an input script command
evaluates the string between the parenthesis as an equal-style variable formula.

Referencing a variable with a leading "v_" is an optional or required kind of argument for some commands (e.g.
the fix ave/spatial or dump custom or stats_style commands) if you wish it to evaluate a variable periodically
during a run. It can also be used in a variable formula if you wish to reference a second variable. The second
variable will be evaluated whenever the first variable is evaluated.

As an example, suppose you use this command in your input script to define the variable "n" as

variable n equal np

before a run where the particle count changes. You might think this will assign the initial count to the variable
"n". That is not the case. Rather it assigns a formula which evaluates the count (using the stats_style keyword
"np") to the variable "n". If you use the variable "n" in some other command like fix ave/time then the current
particle count will be evaluated continuously during the run.

If you want to store the initial particle count of the system, it can be done in this manner:

variable n equal np
variable n0 equal $n

The second command will force "n" to be evaluated (yielding the initial count) and assign that value to the
variable "n0". Thus the command

stats_style custom step v_n v_n0

would print out both the current and initial particle count periodically during the run.

Also note that it is a mistake to enclose a variable formula in quotes if it contains variables preceeded by $ signs.
For example,

variable nratio equal "${nfinal}/${n0}"

This is because the quotes prevent variable substitution (see Section 2.2 of the manual on parsing input script
commands), and thus an error will occur when the formula for "nratio" is evaluated later.

Variable Accuracy:

463

Obviously, SPARTA attempts to evaluate variables containing formulas (equal, particle, grid, surf style
variables) accurately whenever the evaluation is performed. Depending on what is included in the formula, this
may require invoking a compute, or accessing a value previously calculated by a compute, or accessing a value
calculated and stored by a fix. If the compute is one that calculates certain properties of the system such as the
pressure induced on a global boundary due to collisions, then these quantities need to be tallied during the
timesteps on which the variable will need the values.

SPARTA keeps track of all of this as it performs a run as well as in between simulations. An error will be
generated if you attempt to evaluate a variable when SPARTA knows it cannot produce accurate values. For
example, if a stats command prints a variable which accesses values stored by a fix ave/time command and the
timesteps on which stats output is generated are not multiples of the averaging frequency used in the fix
command, then an error will occur.

However, there are two special cases to be aware of when a variable requires invocation of a compute (directly or
indirectly). The first is if the variable is evaluated before a run command which follows the compute command
which created that compute. In this case, SPARTA will generate an error. This is because some computes require
initializations which does not take place unit a run is initialized. One example is the compute property/surf
command which creates a list of surface elements in the specified group. This does not occur until a run begins.

The second special case is when a variable that depends on a compute is evaluated in between run commands. It is
possible for other input script commands issued following the previous run, but before the variable is evaluated, to
change the system. For example, the remove_surf command could be used to remove surface elements. If the
variable depends on a property/surf compute, that compute will not re-initialize itself until the next simulation.
Thus it may generate an incorrect answer when evaluated. Note that SPARTA will not generate an error in this
case; the evaluated variable may simply be incorrect.

The way to get around both of these special cases is to perform a 0-timestep run before evaluating the variable.

Restrictions:

All universe- and uloop-style variables defined in an input script must have the same number of values.

Related commands:

next, jump, include, fix print, print

Default: none

464

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

write_grid command

Syntax:

write_grid filename keyword arg ...

filename = name of file to write grid info to•
zero or more keyword/args pairs may be appended•
keyword = custom

custom arg = name
 name = name of custom per-surf vector or array

•

Examples:

write_grid data.grid
write_grid data.grid custom flags

Description:

Write a grid file in text format listing the grid cell IDs in the current hierarchical grid. See the read_grid and
create_grid commands, as well as Section 6.8 of the manual for a definition of hierarchical grids and grid cell IDs
as used by SPARTA. Note that if the grid is hierarchical, grid cell IDs are not simply numbered from 1 to N. They
also encode the cell's logical position within the grid hierarchy.

The file is in the following format which is the same as the input file used by the read_grid command. Thus the
file can be used to start a subsequent simulation with the same grid topology.

Description line

N cells
M levels
n1 n2 n3 level-1
n1 n2 n3 level-2
...
n1 n2 n3 level-M

Cells

id1 (custom1a) (custom1b) ...
id2 (custom2a) (custom2b) ...
...
idN (customNa) (customNb) ...

The file begins with an arbitrary description line followed by zero or more blank lines. The header section of the
file then lists the number of grid cells N and the number of levels M in the hierarchical grid. For each level the n1,
n2, n3 values give the size of the sub-grid that parent cells (one level lower) are sub-divided into at this level. The
lines in the header section can be in any order except the the number of levels M must appear before any of the
level-* lines. A blank line ends the header section.

The Cells section of the file lists all the grid cell IDs, one per line. They may be in arbitrary order, particularly if
the file is written in parallel, where each processor contributes a subset of the grid cell IDs.

465

https://sparta.github.io

If the optional custom keyword is specified along with the name of a custom per-grid vector or array, then the
per-grid values for that vector or array are added following the grid cell ID. A per-grid vector is a single value per
grid cell; a per-grid array is 1 or more values per grid cell, depending on how it was defined. If the custom
keyword is used multiple times, then the value(s) for each name are appended in the order the custom keywords
are specified.

Restrictions: none

Related commands:

read_grid, create_grid

Default: none

466

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

write_isurf command

Syntax:

write_isurf group-ID Nx Ny Nz filename ablateID keyword args ...

group-ID = group ID for which grid cells store the implicit surfs•
Nx,Ny,Nz = grid cell extent of the grid cell group•
filename = name of file to write grid corner point info to•
ablateID = ID of the fix ablate command which stores the corner points•
zero or more keyword/args pairs may be appended•
keyword = precision

 precision arg = int or double

•

Examples:

write_isurf block 100 100 200 isurf.material.* ablation

Description:

Write a grid corner point file in binary format describing the current corner point values which define the current
set of implicit surface elements. See the read_isurf command for a definition of implicit surface elements and how
they are defined from grid conner point values. The surface file can be used for later input to a new simulation or
for post-processing and visualization.

The specified group-ID is the name of a grid cell group, as defined by the group grid command, which contains a
set of grid cells, all of which are the same size, and which comprise a contiguous 3d array, with specified extent
Nx by Ny by Nz. These should be the same parameters that were used by the read_isurf command, when the
original grid corner point values were read in and used to define a set of implicit surface elements. For 2d
simulations, Nz must be specified as 1, and the group must comprise a 2d array of cells that is Nx by Ny. These are
the grid cells that contain implicit surfaces.

Similar to dump files, the filename can contain a "*" wildcard character. The "*" character is replaced with the
current timestep value. For example isurf.material.0 or isurf.material.100000.

The specified ablateID is the fix ID of a fix ablate command which has been previously specified in the input
script for use with the read_isurf command and (optionally) to perform ablation during a simulation. It stores the
grid corner point values for each grid cell.

The output file is written in the same binary format as the read_isurf command reads in.

Restrictions: none

Related commands:

read_isurf

Default:

467

https://sparta.github.io

The optional keyword default is precision double.

468

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

write_restart command

Syntax:

write_restart file keyword value ...

file = name of file to write restart information to•
zero or more keyword/value pairs may be appended•
keyword = fileper or nfile

fileper arg = Np
 Np = write one file for every this many processors

nfile arg = Nf
 Nf = write this many files, one from each of Nf processors

•

Examples:

write_restart restart.equil
write_restart restart.equil.mpiio
write_restart flow.%.* nfile 10

Description:

Write a binary restart file with the current state of the simulation.

During a long simulation, the restart command can be used to output restart files periodically. The write_restart
command is useful at the end of a run or between two runs, whenever you wish to write out a single current restart
file.

Similar to dump files, the restart filename can contain two wild-card characters. If a "*" appears in the filename, it
is replaced with the current timestep value. If a "%" character appears in the filename, then one file is written by
each processor and the "%" character is replaced with the processor ID from 0 to P-1. An additional file with the
"%" replaced by "base" is also written, which contains global information. For example, the files written for
filename restart.% would be restart.base, restart.0, restart.1, ... restart.P-1. This creates smaller files and can be a
fast mode of output and subsequent input on parallel machines that support parallel I/O. The optional fileper and
nfile keywords discussed below can alter the number of files written.

Restart files can be read by a read_restart command to restart a simulation from a particular state. Because the file
is binary, it may not be readable on another machine.

IMPORTANT NOTE: Although the purpose of restart files is to enable restarting a simulation from where it left
off, not all information about a simulation is stored in the file. For example, the list of fixes that were specified
during the initial run is not stored, which means the new input script must specify any fixes you want to use. See
the read_restart command for details about what is stored in a restart file.

The optional nfile or fileper keywords can be used in conjunction with the "%" wildcard character in the specified
restart file name. As explained above, the "%" character causes the restart file to be written in pieces, one piece
for each of P processors. By default P = the number of processors the simulation is running on. The nfile or fileper
keyword can be used to set P to a smaller value, which can be more efficient when running on a large number of
processors.

469

https://sparta.github.io

The nfile keyword sets P to the specified Nf value. For example, if Nf = 4, and the simulation is running on 100
processors, 4 files will be written, by processors 0,25,50,75. Each will collect information from itself and the next
24 processors and write it to a restart file.

For the fileper keyword, the specified value of Np means write one file for every Np processors. For example, if
Np = 4, every 4th processor (0,4,8,12,etc) will collect information from itself and the next 3 processors and write
it to a restart file.

Restrictions: none

Related commands:

restart, read_restart

Default: none

470

SPARTA WWW Site - SPARTA Documentation - SPARTA Commands

write_surf command

Syntax:

write_surf file

file = name of file to write surface element info to•
zero or more keyword/args pairs may be appended•
keyword = points or type or custom or fileper or nfile

points arg = yes or no to include a Points section in the file
type arg = none
custom arg = name

 name = name of custom per-surf vector or array
fileper arg = Np

 Np = write one file for every this many processors
nfile arg = Nf

 Nf = write this many files, one from each of Nf processors

•

Examples:

write_surf data.surf
write_surf data.surf type custom temperature custom flags
write_surf data.surf points no
write_surf data.surf.% nfile 50

Description:

Write a surface file in text format describing the currently defined surface elements, whether they be explicit or
implicit surfaces. See the read_surf and read_isurf commands for a definition of surface elements and how they
are defined and used be SPARTA. The surface file can be used for later input to a new simulation or for
post-processing and visualization.

Note that if surface objects were clipped when read in by the read_surf command then some surface elements may
have been deleted and new ones created. Likewise for the points that define the end points or corner points of
surface element lines (2d) or triangles (3d). Similarly, if surface elements have been removed by the remove_surf
command, then points may have also been deleted. In either case, surface points and elements are renumbered by
these operations to create compressed, contiguous lists. These lists of surface elements are what is output by this
command.

The output file is written as a text file in the same format as the file the read_surf command reads for explicit
surfaces. See the read_surf doc page for a description of its format.

Similar to dump files, the surface filename can contain two wild-card characters. If a "*" appears in the filename,
it is replaced with the current timestep value. If a "%" character appears in the filename, then one file is written by
each processor and the "%" character is replaced with the processor ID from 0 to P-1. An additional file with the
"%" replaced by "base" is also written, which contains global information, i.e. just the header information for the
number of points and lines or triangles, as described on the read_surf doc page.

For example, the files written for filename data.% would be data.base, data.0, data.1, ..., data.P-1. This creates
smaller files and can be a fast mode of output and subsequent input on parallel machines that support parallel I/O.
The optional fileper and nfile keywords discussed below can alter the number of files written.

471

https://sparta.github.io

Note that implicit surfaces read in by the read_isurf command can be written out by the write_surf command, e.g.
for visualization purposes or to start a second simulation treating implicit surfaces previously ablated via the fix
ablate command as constant, unchanging explicit surfaces. Because this command creates files in an explicit
surface format, it can only be read back in to SPARTA via the read_surf command. It cannot be read back in via
the read_isurf command.

Also note, that implicit surfaces use the grid cell ID as the surface element ID for all line segments (2d) or
triangles (3d) in the same grid cell. When this command writes them to a file, the surface element IDs in the file
become integers between 1 and N, where N is the total number of implicit surface elements.

See the Howto 6.13 section of the manual for a discussion of explicit and implicit surfaces as well as distributed
versus non-distributed storage of surface elements. You cannot mix explicit and implicit surfaces in the same
simulation.

The following optional keywords can be used with this command.

If the points keyword is specified with a value of yes, then a Points section is included in the written file. The
Lines or Triangles section will reference indices from the Points section. If the points keyword is specified with a
value of no, then a Points section is not included. The Lines or Triangles section will list the coordinates of line
segment or trianges corners directly.

If the type keyword is specified, then a surface element type is included for each line or triangle in the Lines or
Triangles section. If it is not specified, element types are not incuded.

If the custom keyword is specified along with the name of a custom per-surf vector or array, then the per-surf
values for that vector or array are added to the end of the line of output for each line or triangle in the Lines or
Triangles section. A per-surf vector is a single value per element; a per-surf array is 1 or more values per element,
depending on how it was defined. If the custom keyword is used multiple times, then the value(s) for each name
are appended in the order the custom keywords are specified.

The nfile or fileper keywords can be used in conjunction with the "%" wildcard character in the specified surface
file name. As explained above, the "%" character causes the surface file to be written in pieces, one piece for each
of P processors. By default P = the number of processors the simulation is running on. The nfile or fileper
keyword can be used to set P to a smaller value, which can be more efficient when running on a large number of
processors.

The nfile keyword sets P to the specified Nf value. For example, if Nf = 4, and the simulation is running on 100
processors, 4 files will be written, by processors 0,25,50,75. Each will collect information from itself and the next
24 processors and write it to a surface file.

For the fileper keyword, the specified value of Np means write one file for every Np processors. For example, if
Np = 4, every 4th processor (0,4,8,12,etc) will collect information from itself and the next 3 processors and write
it to a surface file.

Restrictions:

The custom keyword cannot be used with implicit surfaces.

Related commands:

read_surf, read_isurf

472

Default:

The default is points = yes. If the fileper or nfile keywords are not used, a single file is written.

473...1

	Table of Contents
	
	SPARTA Documentation
	20 Jan 2025 version
	Version info:

	1. Introduction
	1.1 What is SPARTA
	1.2 SPARTA features
	General features
	Models
	Geometry
	Gas-phase collisions and chemistry
	Surface collisions and chemistry
	Performance
	Diagnostics
	Output
	Pre- and post-processing
	1.3 Grids and surfaces in SPARTA
	1.4 Open source distribution
	1.5 Acknowledgments and citations

	2. Getting Started
	2.1 What's in the SPARTA distribution
	2.2 Making SPARTA
	2.3 Making SPARTA with optional packages
	2.4 Building SPARTA as a library
	2.5 Testing SPARTA
	2.6 Running SPARTA
	2.7 Command-line options
	2.8 SPARTA screen output

	3. Commands
	3.1 SPARTA input script
	3.2 Parsing rules
	3.3 Input script structure
	3.4 Commands listed by category
	3.5 Individual commands
	Fix styles
	Compute styles
	Collide styles
	Surface collide styles
	Surface reaction styles

	4. Packages
	FFT package
	KOKKOS package

	5. Accelerating SPARTA performance
	5.1 Measuring performance
	5.2 Packages with optimized styles
	5.3 KOKKOS package

	6. How-to discussions
	6.1 2d simulations
	6.2 Axisymmetric simulations
	6.3 Running multiple simulations from one input script
	6.4 Output from SPARTA (stats, dumps, computes, fixes, variables)
	6.5 Visualizing SPARTA snapshots
	6.6 Library interface to SPARTA
	6.7 Coupling SPARTA to other codes
	6.8 Details of grid geometry in SPARTA
	6.9 Details of surfaces in SPARTA
	6.10 Restarting a simulation
	6.11 Using the ambipolar approximation
	6.12 Using multiple vibrational energy levels
	6.13 Surface elements: explicit, implicit, distributed
	6.14 Implicit surface ablation
	6.15 Transparent surface elements
	6.16 Visualizing SPARTA output with ParaView
	6.17 Custom per-particle, per-grid, per-surf attributes
	6.18 Variable timestep simulations

	7. Example problems
	8. Performance & scalability
	9. Additional tools
	dump2cfg tool
	dump2xyz tool
	grid_refine tool
	implicit_grid tool
	jagged tools
	log2txt tool
	logplot tool
	paraview tools
	stl2surf tool
	surf_create tool
	surf_transform tool

	10. Modifying & extending SPARTA
	10.1 Compute styles
	10.2 Fix styles
	10.3 Region styles
	10.4 Collision styles
	10.5 Surface collision styles
	10.6 Chemistry styles
	10.7 Dump styles
	10.8 Input script commands

	11. Python interface to SPARTA
	11.1 Building SPARTA as a shared library
	11.2 Installing the Python wrapper into Python
	11.3 Extending Python with MPI to run in parallel
	11.4 Testing the Python-SPARTA interface
	11.5 Using SPARTA from Python
	11.6 Example Python scripts that use SPARTA

	12. Errors
	12.1 Common problems
	12.2 Reporting bugs
	12.3 Error & warning messages
	Errors:
	Warnings:

	13. Future and history
	13.1 Coming attractions
	13.2 Past versions

	adapt_grid command
	balance_grid command
	bound_modify command
	boundary command
	clear command
	collide command
	collide_modify command
	compute command
	compute boundary command
	compute count command
	compute count/kk command
	compute distsurf/grid command
	compute distsurf/grid/kk command
	compute dt/grid command
	compute dt/grid/kk command
	compute eflux/grid command
	compute eflux/grid/kk command
	compute fft/grid command
	compute fft/grid/kk command
	compute grid command
	compute grid/kk command
	compute isurf/grid command
	compute ke/particle command
	compute ke/particle/kk command
	compute lambda/grid command
	compute lambda/grid/kk command
	compute pflux/grid command
	compute pflux/grid/kk command
	compute property/grid command
	compute property/grid/kk command
	compute property/surf command
	compute react/boundary command
	compute react/isurf/grid command
	compute react/surf command
	compute reduce command
	compute sonine/grid command
	compute sonine/grid/kk command
	compute surf command
	compute surf/kk command
	compute temp command
	compute temp/kk command
	compute thermal/grid command
	compute thermal/grid/kk command
	compute tvib/grid command
	create_box command
	create_grid command
	create_isurf command
	create_particles command
	create_particles/kk command
	custom command
	dimension command
	dump command
	dump image command
	dump image command
	dump movie command
	Rendering of particles
	Rendering of grid cells
	Rendering of surface elements

	dump_modify command
	echo command
	fix command
	fix ablate command
	fix adapt command
	fix adapt/kk command
	fix ambipolar command
	fix ambipolar command/kk
	fix ave/grid command
	fix ave/grid/kk command
	fix ave/histo command
	fix ave/histo/kk command
	fix ave/histo/weight command
	fix ave/histo/weight/kk command
	fix ave/surf command
	fix ave/time command
	fix balance command
	fix balance/kk command
	fix dt/reset command
	fix emit/face command
	fix emit/face/kk command
	fix emit/face/file command
	fix emit/surf command
	fix field/grid command
	fix field/particle command
	fix grid/check command
	fix grid/check/kk command
	fix halt command
	fix move/surf command
	fix move/surf/kk command
	fix print command
	fix surf/temp command
	fix temp/global/rescale command
	fix temp/rescale command
	fix temp/rescale/kk command
	fix vibmode command
	global command
	group command
	if command
	include command
	jump command
	label command
	log command
	mixture command
	move_surf command
	next command
	package command
	partition command
	print command
	quit command
	react command
	react_modify command
	read_grid command
	read_isurf command
	read_particles command
	read_restart command
	read_surf command
	region command
	remove_surf command
	reset_timestep command
	restart command
	run command
	scale_particles command
	seed command
	shell command
	species command
	species_modify command
	stats command
	stats_modify command
	stats_style command
	suffix command
	surf_collide command
	surf_modify command
	surf_react command
	surf_react adsorb command
	surf_react adsorb command
	timestep command
	uncompute command
	undump command
	unfix command
	units command
	variable command
	Math Operators
	Math Functions
	Special Functions
	Particle Vectors
	Grid Vectors
	Compute References
	Fix References
	Custom Attribute References
	Surface Collision and Surface Reaction Model References
	Variable References

	write_grid command
	write_isurf command
	write_restart command
	write_surf command

